995 research outputs found

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Security for networked smart healthcare systems: A systematic review

    Get PDF
    Background and Objectives Smart healthcare systems use technologies such as wearable devices, Internet of Medical Things and mobile internet technologies to dynamically access health information, connect patients to health professionals and health institutions, and to actively manage and respond intelligently to the medical ecosystem's needs. However, smart healthcare systems are affected by many challenges in their implementation and maintenance. Key among these are ensuring the security and privacy of patient health information. To address this challenge, several mitigation measures have been proposed and some have been implemented. Techniques that have been used include data encryption and biometric access. In addition, blockchain is an emerging security technology that is expected to address the security issues due to its distributed and decentralized architecture which is similar to that of smart healthcare systems. This study reviewed articles that identified security requirements and risks, proposed potential solutions, and explained the effectiveness of these solutions in addressing security problems in smart healthcare systems. Methods This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines and was framed using the Problem, Intervention, Comparator, and Outcome (PICO) approach to investigate and analyse the concepts of interest. However, the comparator is not applicable because this review focuses on the security measures available and in this case no comparable solutions were considered since the concept of smart healthcare systems is an emerging one and there are therefore, no existing security solutions that have been used before. The search strategy involved the identification of studies from several databases including the Cumulative Index of Nursing and Allied Health Literature (CINAL), Scopus, PubMed, Web of Science, Medline, Excerpta Medical database (EMBASE), Ebscohost and the Cochrane Library for articles that focused on the security for smart healthcare systems. The selection process involved removing duplicate studies, and excluding studies after reading the titles, abstracts, and full texts. Studies whose records could not be retrieved using a predefined selection criterion for inclusion and exclusion were excluded. The remaining articles were then screened for eligibility. A data extraction form was used to capture details of the screened studies after reading the full text. Of the searched databases, only three yielded results when the search strategy was applied, i.e., Scopus, Web of science and Medline, giving a total of 1742 articles. 436 duplicate studies were removed. Of the remaining articles, 801 were excluded after reading the title, after which 342 after were excluded after reading the abstract, leaving 163, of which 4 studies could not be retrieved. 159 articles were therefore screened for eligibility after reading the full text. Of these, 14 studies were included for detailed review using the formulated research questions and the PICO framework. Each of the 14 included articles presented a description of a smart healthcare system and identified the security requirements, risks and solutions to mitigate the risks. Each article also summarized the effectiveness of the proposed security solution. Results The key security requirements reported were data confidentiality, integrity and availability of data within the system, with authorisation and authentication used to support these key security requirements. The identified security risks include loss of data confidentiality due to eavesdropping in wireless communication mediums, authentication vulnerabilities in user devices and storage servers, data fabrication and message modification attacks during transmission as well as while the data is at rest in databases and other storage devices. The proposed mitigation measures included the use of biometric accessing devices; data encryption for protecting the confidentiality and integrity of data; blockchain technology to address confidentiality, integrity, and availability of data; network slicing techniques to provide isolation of patient health data in 5G mobile systems; and multi-factor authentication when accessing IoT devices, servers, and other components of the smart healthcare systems. The effectiveness of the proposed solutions was demonstrated through their ability to provide a high level of data security in smart healthcare systems. For example, proposed encryption algorithms demonstrated better energy efficiency, and improved operational speed; reduced computational overhead, better scalability, efficiency in data processing, and better ease of deployment. Conclusion This systematic review has shown that the use of blockchain technology, biometrics (fingerprints), data encryption techniques, multifactor authentication and network slicing in the case of 5G smart healthcare systems has the potential to alleviate possible security risks in smart healthcare systems. The benefits of these solutions include a high level of security and privacy for Electronic Health Records (EHRs) systems; improved speed of data transaction without the need for a decentralized third party, enabled by the use of blockchain. However, the proposed solutions do not address data protection in cases where an intruder has already accessed the system. This may be potential avenues for further research and inquiry

    Emerging Informatics

    Get PDF
    The book on emerging informatics brings together the new concepts and applications that will help define and outline problem solving methods and features in designing business and human systems. It covers international aspects of information systems design in which many relevant technologies are introduced for the welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that helps better conceptualise and design new world-class solutions. The book provides four flexible sections that accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each chapter presents a clear basis through the problem conception and its applicable technological solutions. I hope this will help further exploration of knowledge in the informatics discipline

    Security Enhanced Applications for Information Systems

    Get PDF
    Every day, more users access services and electronically transmit information which is usually disseminated over insecure networks and processed by websites and databases, which lack proper security protection mechanisms and tools. This may have an impact on both the users’ trust as well as the reputation of the system’s stakeholders. Designing and implementing security enhanced systems is of vital importance. Therefore, this book aims to present a number of innovative security enhanced applications. It is titled “Security Enhanced Applications for Information Systems” and includes 11 chapters. This book is a quality guide for teaching purposes as well as for young researchers since it presents leading innovative contributions on security enhanced applications on various Information Systems. It involves cases based on the standalone, network and Cloud environments

    An improved image steganography scheme based on distinction grade value and secret message encryption

    Get PDF
    Steganography is an emerging and greatly demanding technique for secure information communication over the internet using a secret cover object. It can be used for a wide range of applications such as safe circulation of secret data in intelligence, industry, health care, habitat, online voting, mobile banking and military. Commonly, digital images are used as covers for the steganography owing to their redundancy in the representation, making them hidden to the intruders, hackers, adversaries, unauthorized users. Still, any steganography system launched over the Internet can be cracked upon recognizing the stego cover. Thus, the undetectability that involves data imperceptibility or concealment and security is the significant trait of any steganography system. Presently, the design and development of an effective image steganography system are facing several challenges including low capacity, poor robustness and imperceptibility. To surmount such limitations, it is important to improve the capacity and security of the steganography system while maintaining a high signal-to-noise ratio (PSNR). Based on these factors, this study is aimed to design and develop a distinction grade value (DGV) method to effectively embed the secret data into a cover image for achieving a robust steganography scheme. The design and implementation of the proposed scheme involved three phases. First, a new encryption method called the shuffle the segments of secret message (SSSM) was incorporated with an enhanced Huffman compression algorithm to improve the text security and payload capacity of the scheme. Second, the Fibonacci-based image transformation decomposition method was used to extend the pixel's bit from 8 to 12 for improving the robustness of the scheme. Third, an improved embedding method was utilized by integrating a random block/pixel selection with the DGV and implicit secret key generation for enhancing the imperceptibility of the scheme. The performance of the proposed scheme was assessed experimentally to determine the imperceptibility, security, robustness and capacity. The standard USC-SIPI images dataset were used as the benchmarking for the performance evaluation and comparison of the proposed scheme with the previous works. The resistance of the proposed scheme was tested against the statistical, X2 , Histogram and non-structural steganalysis detection attacks. The obtained PSNR values revealed the accomplishment of higher imperceptibility and security by the proposed DGV scheme while a higher capacity compared to previous works. In short, the proposed steganography scheme outperformed the commercially available data hiding schemes, thereby resolved the existing issues

    Cyber Defense Remediation in Energy Delivery Systems

    Get PDF
    The integration of Information Technology (IT) and Operational Technology (OT) in Cyber-Physical Systems (CPS) has resulted in increased efficiency and facilitated real-time information acquisition, processing, and decision making. However, the increase in automation technology and the use of the internet for connecting, remote controlling, and supervising systems and facilities has also increased the likelihood of cybersecurity threats that can impact safety of humans and property. There is a need to assess cybersecurity risks in the power grid, nuclear plants, chemical factories, etc. to gain insight into the likelihood of safety hazards. Quantitative cybersecurity risk assessment will lead to informed cyber defense remediation and will ensure the presence of a mitigation plan to prevent safety hazards. In this dissertation, using Energy Delivery Systems (EDS) as a use case to contextualize a CPS, we address key research challenges in managing cyber risk for cyber defense remediation. First, we developed a platform for modeling and analyzing the effect of cyber threats and random system faults on EDS\u27s safety that could lead to catastrophic damages. We developed a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in EDS. We created an operational impact assessment to quantify the damages. Finally, we developed a strategic response decision capability that presents optimal mitigation actions and policies that balance the tradeoff between operational resilience (tactical risk) and strategic risk. Next, we addressed the challenge of management of tactical risk based on a prioritized cyber defense remediation plan. A prioritized cyber defense remediation plan is critical for effective risk management in EDS. Due to EDS\u27s complexity in terms of the heterogeneous nature of blending IT and OT and Industrial Control System (ICS), scale, and critical processes tasks, prioritized remediation should be applied gradually to protect critical assets. We proposed a methodology for prioritizing cyber risk remediation plans by detecting and evaluating critical EDS nodes\u27 paths. We conducted evaluation of critical nodes characteristics based on nodes\u27 architectural positions, measure of centrality based on nodes\u27 connectivity and frequency of network traffic, as well as the controlled amount of electrical power. The model also examines the relationship between cost models of budget allocation for removing vulnerabilities on critical nodes and their impact on gradual readiness. The proposed cost models were empirically validated in an existing network ICS test-bed computing nodes criticality. Two cost models were examined, and although varied, we concluded the lack of correlation between types of cost models to most damageable attack path and critical nodes readiness. Finally, we proposed a time-varying dynamical model for the cyber defense remediation in EDS. We utilize the stochastic evolutionary game model to simulate the dynamic adversary of cyber-attack-defense. We leveraged the Logit Quantal Response Dynamics (LQRD) model to quantify real-world players\u27 cognitive differences. We proposed the optimal decision making approach by calculating the stable evolutionary equilibrium and balancing defense costs and benefits. Case studies on EDS indicate that the proposed method can help the defender predict possible attack action, select the related optimal defense strategy over time, and gain the maximum defense payoffs. We also leveraged software-defined networking (SDN) in EDS for dynamical cyber defense remediation. We presented an approach to aid the selection security controls dynamically in an SDN-enabled EDS and achieve tradeoffs between providing security and Quality of Service (QoS). We modeled the security costs based on end-to-end packet delay and throughput. We proposed a non-dominated sorting based multi-objective optimization framework which can be implemented within an SDN controller to address the joint problem of optimizing between security and QoS parameters by alleviating time complexity at O(MN2). The M is the number of objective functions, and N is the population for each generation, respectively. We presented simulation results that illustrate how data availability and data integrity can be achieved while maintaining QoS constraints
    • …
    corecore