275 research outputs found

    Symbolic-numeric interface: A review

    Get PDF
    A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach

    A "Piano Movers" Problem Reformulated

    Get PDF
    It has long been known that cylindrical algebraic decompositions (CADs) can in theory be used for robot motion planning. However, in practice even the simplest examples can be too complicated to tackle. We consider in detail a "Piano Mover's Problem" which considers moving an infinitesimally thin piano (or ladder) through a right-angled corridor. Producing a CAD for the original formulation of this problem is still infeasible after 25 years of improvements in both CAD theory and computer hardware. We review some alternative formulations in the literature which use differing levels of geometric analysis before input to a CAD algorithm. Simpler formulations allow CAD to easily address the question of the existence of a path. We provide a new formulation for which both a CAD can be constructed and from which an actual path could be determined if one exists, and analyse the CADs produced using this approach for variations of the problem. This emphasises the importance of the precise formulation of such problems for CAD. We analyse the formulations and their CADs considering a variety of heuristics and general criteria, leading to conclusions about tackling other problems of this form.Comment: 8 pages. Copyright IEEE 201

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    An implementation of CAD in Maple utilising problem formulation, equational constraints and truth-table invariance

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for the investigation of semi-algebraic sets, with applications within algebraic geometry and beyond. We recently reported on a new implementation of CAD in Maple which implemented the original algorithm of Collins and the subsequent improvement to projection by McCallum. Our implementation was in contrast to Maple's in-built CAD command, based on a quite separate theory. Although initially developed as an investigative tool to compare the algorithms, we found and reported that our code offered functionality not currently available in any other existing implementations. One particularly important piece of functionality is the ability to produce order-invariant CADs. This has allowed us to extend the implementation to produce CADs invariant with respect to either equational constraints (ECCADs) or the truth-tables of sequences of formulae (TTICADs). This new functionality is contained in the second release of our code, along with commands to consider problem formulation which can be a major factor in the tractability of a CAD. In the report we describe the new functionality and some theoretical discoveries it prompted. We describe how the CADs produced using equational constraints are able to take advantage of not just improved projection but also improvements in the lifting phase. We also present an extension to the original TTICAD algorithm which increases both the applicability of TTICAD and its relative benefit over other algorithms. The code and an introductory Maple worksheet / pdf demonstrating the full functionality of the package are freely available online.Comment: 12 pages; University of Bath, Dept. Computer Science Technical Report Series, 2013-02, 201

    A Generalized Framework for Virtual Substitution

    Full text link
    We generalize the framework of virtual substitution for real quantifier elimination to arbitrary but bounded degrees. We make explicit the representation of test points in elimination sets using roots of parametric univariate polynomials described by Thom codes. Our approach follows an early suggestion by Weispfenning, which has never been carried out explicitly. Inspired by virtual substitution for linear formulas, we show how to systematically construct elimination sets containing only test points representing lower bounds

    A Survey of User Interfaces for Computer Algebra Systems

    Get PDF
    AbstractThis paper surveys work within the Computer Algebra community (and elsewhere) directed towards improving user interfaces for scientific computation during the period 1963–1994. It is intended to be useful to two groups of people: those who wish to know what work has been done and those who would like to do work in the field. It contains an extensive bibliography to assist readers in exploring the field in more depth. Work related to improving human interaction with computer algebra systems is the main focus of the paper. However, the paper includes additional materials on some closely related issues such as structured document editing, graphics, and communication protocols

    Macsyma: A personal history

    Get PDF
    AbstractThe Macsyma system arose out of research on mathematical software in the AI group at MIT in the 1960s. Algorithm development in symbolic integration and simplification arose out of the interest of people, such as the author, who were also mathematics students. The later development of algorithms for the GCD of sparse polynomials, for example, arose out of the needs of our user community. During various times in the 1970s the computer on which Macsyma ran was one of the most popular nodes on the ARPANET. We discuss the attempts in the late 70s and the 80s to develop Macsyma systems that ran on popular computer architectures. Finally, we discuss the impact of the fundamental ideas in Macsyma on the author’s current research on large scale engineering and socio-technical systems
    • …
    corecore