237,152 research outputs found

    Fragments and frame classes:Towards a uniform proof theory for modal fixed point logics

    Get PDF
    This thesis studies the proof theory of modal fixed point logics. In particular, we construct proof systems for various fragments of the modal mu-calculus, interpreted over various classes of frames. With an emphasis on uniform constructions and general results, we aim to bring the relatively underdeveloped proof theory of modal fixed point logics closer to the well-established proof theory of basic modal logic. We employ two main approaches. First, we seek to generalise existing methods for basic modal logic to accommodate fragments of the modal mu-calculus. We use this approach for obtaining Hilbert-style proof systems. Secondly, we adapt existing proof systems for the modal mu-calculus to various classes of frames. This approach yields proof systems which are non-well-founded, or cyclic.The thesis starts with an introduction and some mathematical preliminaries. In Chapter 3 we give hypersequent calculi for modal logic with the master modality, building on work by Ori Lahav. This is followed by an Intermezzo, where we present an abstract framework for cyclic proofs, in which we give sufficient conditions for establishing the bounded proof property. In Chapter 4 we generalise existing work on Hilbert-style proof systems for PDL to the level of the continuous modal mu-calculus. Chapter 5 contains a novel cyclic proof system for the alternation-free two-way modal mu-calculus. Finally, in Chapter 6, we present a cyclic proof system for Guarded Kleene Algebra with Tests and take a first step towards using it to establish the completeness of an algebraic counterpart

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Towards a Paraconsistent Quantum Set Theory

    Full text link
    In this paper, we will attempt to establish a connection between quantum set theory, as developed by Ozawa, Takeuti and Titani, and topos quantum theory, as developed by Isham, Butterfield and Doring, amongst others. Towards this end, we will study algebraic valued set-theoretic structures whose truth values correspond to the clopen subobjects of the spectral presheaf of an orthomodular lattice of projections onto a given Hilbert space. In particular, we will attempt to recreate, in these new structures, Takeuti's original isomorphism between the set of all Dedekind real numbers in a suitably constructed model of set theory and the set of all self adjoint operators on a chosen Hilbert space.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    A realizability semantics for inductive formal topologies, Church's Thesis and Axiom of Choice

    Get PDF
    We present a Kleene realizability semantics for the intensional level of the Minimalist Foundation, for short mtt, extended with inductively generated formal topologies, Church's thesis and axiom of choice. This semantics is an extension of the one used to show consistency of the intensional level of the Minimalist Foundation with the axiom of choice and formal Church's thesis in previous work. A main novelty here is that such a semantics is formalized in a constructive theory represented by Aczel's constructive set theory CZF extended with the regular extension axiom

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    Comparing theories: the dynamics of changing vocabulary. A case-study in relativity theory

    Full text link
    There are several first-order logic (FOL) axiomatizations of special relativity theory in the literature, all looking essentially different but claiming to axiomatize the same physical theory. In this paper, we elaborate a comparison, in the framework of mathematical logic, between these FOL theories for special relativity. For this comparison, we use a version of mathematical definability theory in which new entities can also be defined besides new relations over already available entities. In particular, we build an interpretation of the reference-frame oriented theory SpecRel into the observationally oriented Signalling theory of James Ax. This interpretation provides SpecRel with an operational/experimental semantics. Then we make precise, "quantitative" comparisons between these two theories via using the notion of definitional equivalence. This is an application of logic to the philosophy of science and physics in the spirit of Johan van Benthem's work.Comment: 27 pages, 8 figures. To appear in Springer Book series Trends in Logi

    Towards Closed World Reasoning in Dynamic Open Worlds (Extended Version)

    Full text link
    The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics for hybrid knowledge bases composed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve. In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties. To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.Comment: 40 pages; an extended version of the article published in Theory and Practice of Logic Programming, 10 (4-6): 547 - 564, July. Copyright 2010 Cambridge University Pres
    corecore