16,302 research outputs found

    Enabling virtual radio functions on software defined radio for future wireless networks

    Get PDF
    Today's wired networks have become highly flexible, thanks to the fact that an increasing number of functionalities are realized by software rather than dedicated hardware. This trend is still in its early stages for wireless networks, but it has the potential to improve the network's flexibility and resource utilization regarding both the abundant computational resources and the scarce radio spectrum resources. In this work we provide an overview of the enabling technologies for network reconfiguration, such as Network Function Virtualization, Software Defined Networking, and Software Defined Radio. We review frequently used terminology such as softwarization, virtualization, and orchestration, and how these concepts apply to wireless networks. We introduce the concept of Virtual Radio Function, and illustrate how softwarized/virtualized radio functions can be placed and initialized at runtime, allowing radio access technologies and spectrum allocation schemes to be formed dynamically. Finally we focus on embedded Software-Defined Radio as an end device, and illustrate how to realize the placement, initialization and configuration of virtual radio functions on such kind of devices

    Active networks: an evolution of the internet

    Get PDF
    Active Networks can be seen as an evolution of the classical model of packet-switched networks. The traditional and ”passive” network model is based on a static definition of the network node behaviour. Active Networks propose an “active” model where the intermediate nodes (switches and routers) can load and execute user code contained in the data units (packets). Active Networks are a programmable network model, where bandwidth and computation are both considered shared network resources. This approach opens up new interesting research fields. This paper gives a short introduction of Active Networks, discusses the advantages they introduce and presents the research advances in this field

    Evolution towards Smart Optical Networking: Where Artificial Intelligence (AI) meets the World of Photonics

    Full text link
    Smart optical networks are the next evolution of programmable networking and programmable automation of optical networks, with human-in-the-loop network control and management. The paper discusses this evolution and the role of Artificial Intelligence (AI)

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page
    • …
    corecore