60,358 research outputs found

    Interaction platform-orientated perspective in designing novel applications

    Get PDF
    The lack of HCI offerings in the invention of novel software applications and the bias of design knowledge towards desktop GUI make it difficult for us to design for novel scenarios and applications that leverage emerging computational technologies. These include new media platforms such as mobiles, interactive TV, tabletops and large multi-touch walls on which many of our future applications will operate. We argue that novel application design should come not from user-centred requirements engineering as in developing a conventional application, but from understanding the interaction characteristics of the new platforms. Ensuring general usability for a particular interaction platform without rigorously specifying envisaged usage contexts helps us to design an artifact that does not restrict the possible application contexts and yet is usable enough to help brainstorm its more exact place for future exploitation

    Supporting ethnographic studies of ubiquitous computing in the wild

    Get PDF
    Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild

    Establishing the design knowledge for emerging interaction platforms

    Get PDF
    While awaiting a variety of innovative interactive products and services to appear in the market in the near future such as interactive tabletops, interactive TVs, public multi-touch walls, and other embedded appliances, this paper calls for preparation for the arrival of such interactive platforms based on their interactivity. We advocate studying, understanding and establishing the foundation for interaction characteristics and affordances and design implications for these platforms which we know will soon emerge and penetrate our everyday lives. We review some of the archetypal interaction platform categories of the future and highlight the current status of the design knowledge-base accumulated to date and the current rate of growth for each of these. We use example designs illustrating design issues and considerations based on the authors’ 12-year experience in pioneering novel applications in various forms and styles

    EyePACT: eye-based parallax correction on touch-enabled interactive displays

    Get PDF
    The parallax effect describes the displacement between the perceived and detected touch locations on a touch-enabled surface. Parallax is a key usability challenge for interactive displays, particularly for those that require thick layers of glass between the screen and the touch surface to protect them from vandalism. To address this challenge, we present EyePACT, a method that compensates for input error caused by parallax on public displays. Our method uses a display-mounted depth camera to detect the user's 3D eye position in front of the display and the detected touch location to predict the perceived touch location on the surface. We evaluate our method in two user studies in terms of parallax correction performance as well as multi-user support. Our evaluations demonstrate that EyePACT (1) significantly improves accuracy even with varying gap distances between the touch surface and the display, (2) adapts to different levels of parallax by resulting in significantly larger corrections with larger gap distances, and (3) maintains a significantly large distance between two users' fingers when interacting with the same object. These findings are promising for the development of future parallax-free interactive displays
    corecore