2,646 research outputs found

    Non-intrusive anomaly detection for encrypted networks

    Get PDF
    The use of encryption is steadily increasing. Packet payloads that are encrypted are becoming increasingly difficult to analyze using IDSs. This investigation uses a new non-intrusive IDS approach to detect network intrusions using a K-Means clustering methodology. It was found that this approach was able to detect many intrusions for these datasets while maintaining the encrypted confidentiality of packet information. This work utilized the KDD \u2799 and NSL-KDD evaluation datasets for testing

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Identification, prediction and mitigation of sinkhole hazards in evaporite karst areas

    Get PDF
    Abstract Sinkholes usually have a higher probability of occurrence and a greater genetic diversity in evaporite terrains than in carbonate karst areas. This is because evaporites have a higher solubility, and commonly a lower mechanical strength. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well-understood in a few areas. To deal with these hazards, a phased approach is needed for sinkhole identification, investigation, prediction, and mitigation. Identification techniques include field surveys, and geomorphological mapping combined with accounts from local people and historical sources. Detailed sinkhole maps can be constructed from sequential historical maps, recent topographical maps and digital elevation models (DEMs) complemented with building-damage surveying, remote sensing, and high-resolution geodetic surveys. On a more detailed level, information from exposed paleosubsidence features (paleokarst), speleological explorations, geophysical investigations, trenching, dating techniques, and boreholes, may help to recognize dissolution and subsidence features. Information on the hydrogeological pathways including caves, springs and swallow holes, are particularly important especially when corroborated by tracer tests. These diverse data sources make a valuable database - the karst inventory. From this dataset, sinkhole susceptibility zonations (relative probability) may be produced based on the spatial and temporal distribution of the features and good knowledge of the local geology. Sinkhole distribution can be investigated by spatial distribution analysis techniques including studies of preferential elongation, alignment and nearest neighbor analysis. More objective susceptibility models may be obtained by analyzing the statistical relationships between the known sinkholes and the conditioning factors, such as weather conditions. Chronological information on sinkhole formation is required to estimate the probability of occurrence of sinkholes (number of sinkholes/km² year). Such spatial and temporal predictions, derived from limited records and based on the assumption that past sinkhole activity may be extrapolated to the future, are non-corroborated hypotheses. Validation methods allow us to assess the predictive capability of the susceptibility maps and to transform them into probability maps. Avoiding the most hazardous areas by preventive planning is the safest strategy for development in sinkhole-prone areas. Corrective measures could be to reduce the dissolution activity and subsidence processes, but these are difficult. A more practical solution for safe development is to reduce the vulnerability of the structures by using subsidence-proof designs

    Role based behavior analysis

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2009Nos nossos dias, o sucesso de uma empresa depende da sua agilidade e capacidade de se adaptar a condições que se alteram rapidamente. Dois requisitos para esse sucesso são trabalhadores proactivos e uma infra-estrutura ágil de Tecnologias de Informacão/Sistemas de Informação (TI/SI) que os consiga suportar. No entanto, isto nem sempre sucede. Os requisitos dos utilizadores ao nível da rede podem nao ser completamente conhecidos, o que causa atrasos nas mudanças de local e reorganizações. Além disso, se não houver um conhecimento preciso dos requisitos, a infraestrutura de TI/SI poderá ser utilizada de forma ineficiente, com excessos em algumas áreas e deficiências noutras. Finalmente, incentivar a proactividade não implica acesso completo e sem restrições, uma vez que pode deixar os sistemas vulneráveis a ameaças externas e internas. O objectivo do trabalho descrito nesta tese é desenvolver um sistema que consiga caracterizar o comportamento dos utilizadores do ponto de vista da rede. Propomos uma arquitectura de sistema modular para extrair informação de fluxos de rede etiquetados. O processo é iniciado com a criação de perfis de utilizador a partir da sua informação de fluxos de rede. Depois, perfis com características semelhantes são agrupados automaticamente, originando perfis de grupo. Finalmente, os perfis individuais são comprados com os perfis de grupo, e os que diferem significativamente são marcados como anomalias para análise detalhada posterior. Considerando esta arquitectura, propomos um modelo para descrever o comportamento de rede dos utilizadores e dos grupos. Propomos ainda métodos de visualização que permitem inspeccionar rapidamente toda a informação contida no modelo. O sistema e modelo foram avaliados utilizando um conjunto de dados reais obtidos de um operador de telecomunicações. Os resultados confirmam que os grupos projectam com precisão comportamento semelhante. Além disso, as anomalias foram as esperadas, considerando a população subjacente. Com a informação que este sistema consegue extrair dos dados em bruto, as necessidades de rede dos utilizadores podem sem supridas mais eficazmente, os utilizadores suspeitos são assinalados para posterior análise, conferindo uma vantagem competitiva a qualquer empresa que use este sistema.In our days, the success of a corporation hinges on its agility and ability to adapt to fast changing conditions. Proactive workers and an agile IT/IS infrastructure that can support them is a requirement for this success. Unfortunately, this is not always the case. The user’s network requirements may not be fully understood, which slows down relocation and reorganization. Also, if there is no grasp on the real requirements, the IT/IS infrastructure may not be efficiently used, with waste in some areas and deficiencies in others. Finally, enabling proactivity does not mean full unrestricted access, since this may leave the systems vulnerable to outsider and insider threats. The purpose of the work described on this thesis is to develop a system that can characterize user network behavior. We propose a modular system architecture to extract information from tagged network flows. The system process begins by creating user profiles from their network flows’ information. Then, similar profiles are automatically grouped into clusters, creating role profiles. Finally, the individual profiles are compared against the roles, and the ones that differ significantly are flagged as anomalies for further inspection. Considering this architecture, we propose a model to describe user and role network behavior. We also propose visualization methods to quickly inspect all the information contained in the model. The system and model were evaluated using a real dataset from a large telecommunications operator. The results confirm that the roles accurately map similar behavior. The anomaly results were also expected, considering the underlying population. With the knowledge that the system can extract from the raw data, the users network needs can be better fulfilled, the anomalous users flagged for inspection, giving an edge in agility for any company that uses it

    The chlorite proximitor: A new tool for detecting porphyry ore deposits

    Get PDF
    publisher: Elsevier articletitle: The chlorite proximitor: A new tool for detecting porphyry ore deposits journaltitle: Journal of Geochemical Exploration articlelink: http://dx.doi.org/10.1016/j.gexplo.2015.01.005 content_type: article copyright: Crown copyright © 2015 Published by Elsevier B.V.Copyright © 2016 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V. [Creative Commons License 4.0]. The attached file is the published version of the article

    Network Intrusion Detection and Mitigation Against Denial of Service Attack

    Get PDF
    The growing use of Internet service in the past few years have facilitated an increase in the denial of service (DoS) attacks. Despite the best preventative measures, DoS attacks have been successfully carried out against high-prole organizations and enterprises, including those that took down Chase, BOA, PNC and other major US banks in September 2009, which reveal the vulnerability of even well equipped networks. These widespread attacks have resulted in significant loss of service, money, and reputation for organizations, calling for a practical and ecient solution to DoS attack detection and mitigation. DoS attack detection and mitigation strengthens the robustness and security of network or computer system, by monitoring system activities for suspicious behaviors or policy violations, providing forensic information about the attack, and taking defensive measures to reduce the impact on the system. In general, attacks can be detected by (1) matching observed network trac with patterns of known attacks; (2) looking for deviation of trac behavior from the established prole; and (3) training a classier from labeled dataset of attacks to classify incoming trac. Once an attack is identied, the suspicious trac can be blocked or rate limited. In this presentation, we present a taxonomy of DoS attack detection and mitigation techniques, followed by a description of four representative systems (Snort, PHAD, MADAM, and MULTOPS). We conclude with a discussion of their pros/cons as well as challenges for future work

    Identification of Paleo-Volcanic Rocks on Seismic Data

    Get PDF
    • …
    corecore