11 research outputs found

    Need for speed:Achieving fast image processing in acute stroke care

    Get PDF
    This thesis aims to investigate the use of high-performance computing (HPC) techniques in developing imaging biomarkers to support the clinical workflow of acute stroke patients. In the first part of this thesis, we evaluate different HPC technologies and how such technologies can be leveraged by different image analysis applications used in the context of acute stroke care. More specifically, we evaluated how computers with multiple computing devices can be used to accelerate medical imaging applications in Chapter 2. Chapter 3 proposes a novel data compression technique that efficiently processes CT perfusion (CTP) images in GPUs. Unfortunately, the size of CTP datasets makes data transfers to computing devices time-consuming and, therefore, unsuitable in acute situations. Chapter 4 further evaluates the algorithm's usefulness proposed in Chapter 3 with two different applications: a double threshold segmentation and a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in CTP scans. Finally, Chapter 5 presents a cloud platform for deploying high-performance medical applications for acute stroke patients. In Part 2 of this thesis, Chapter 6 presents a convolutional neural network (CNN) for detecting and volumetric segmentation of subarachnoid hemorrhages (SAH) in non-contrast CT scans. Chapter 7 proposed another method based on CNNs to quantify the final infarct volumes in follow-up non-contrast CT scans from ischemic stroke patients

    Added value of acute multimodal CT-based imaging (MCTI) : a comprehensive analysis

    Get PDF
    Introduction: MCTI is used to assess acute ischemic stroke (AIS) patients.We postulated that use of MCTI improves patient outcome regardingindependence and mortality.Methods: From the ASTRAL registry, all patients with an AIS and a non-contrast-CT (NCCT), angio-CT (CTA) or perfusion-CT (CTP) within24 h from onset were included. Demographic, clinical, biological, radio-logical, and follow-up caracteristics were collected. Significant predictorsof MCTI use were fitted in a multivariate analysis. Patients undergoingCTA or CTA&CTP were compared with NCCT patients with regards tofavourable outcome (mRS ≤ 2) at 3 months, 12 months mortality, strokemechanism, short-term renal function, use of ancillary diagnostic tests,duration of hospitalization and 12 months stroke recurrence

    Multicentre evaluation of MRI variability in the quantification of infarct size in experimental focal cerebral ischaemia

    Get PDF
    Ischaemic stroke is a leading cause of death and disability in the developed world. Despite that considerable advances in experimental research enabled understanding of the pathophysiology of the disease and identified hundreds of potential neuroprotective drugs for treatment, no such drug has shown efficacy in humans. The failure in the translation from bench to bedside has been partially attributed to the poor quality and rigour of animal studies. Recently, it has been suggested that multicentre animal studies imitating the design of randomised clinical trials could improve the translation of experimental research. Magnetic resonance imaging (MRI) could be pivotal in such studies due to its non-invasive nature and its high sensitivity to ischaemic lesions, but its accuracy and concordance across centres has not yet been evaluated. This thesis focussed on the use of MRI for the assessment of late infarct size, the primary outcome used in stroke models. Initially, a systematic review revealed that a plethora of imaging protocols and data analysis methods are used for this purpose. Using meta-analysis techniques, it was determined that T2-weighted imaging (T2WI) was best correlated with gold standard histology for the measurement of infarctbased treatment effects. Then, geometric accuracy in six different preclinical MRI scanners was assessed using structural phantoms and automated data analysis tools developed in-house. It was found that geometric accuracy varies between scanners, particularly when centre-specific T2WI protocols are used instead of a standardised protocol, though longitudinal stability over six months is high. Finally, a simulation study suggested that the measured geometric errors and the different protocols are sufficient to render infarct volumes and related group comparisons across centres incomparable. The variability increases when both factors are taken into account and when infarct volume is expressed as a relative estimate. Data in this study were analysed using a custom-made semi-automated tool that was faster and more reliable in repeated analyses than manual analysis. Findings of this thesis support the implementation of standardised methods for the assessment and optimisation of geometric accuracy in MRI scanners, as well as image acquisition and analysis of in vivo data for the measurement of infarct size in multicentre animal studies. Tools and techniques developed as part of the thesis show great promise in the analysis of phantom and in vivo data and could be a step towards this endeavour

    Cognitive Foundations for Visual Analytics

    Full text link

    Proceedings of the 8th International Conference on Energy Efficiency in Domestic Appliances and Lighting

    Get PDF
    At the EEDAL'15 conference 128 papers dealing with energy consumption and energy efficiency improvements for the residential sector have been presented. Papers focused policies and programmes, technologies and consumer behaviour. Special focus was on standards and labels, demand response and smart meters. All the paper s have been peer reviewed by experts in the sector.JRC.F.7-Renewables and Energy Efficienc

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore