7,160 research outputs found

    Methodology for Designing Decision Support Systems for Visualising and Mitigating Supply Chain Cyber Risk from IoT Technologies

    Full text link
    This paper proposes a methodology for designing decision support systems for visualising and mitigating the Internet of Things cyber risks. Digital technologies present new cyber risk in the supply chain which are often not visible to companies participating in the supply chains. This study investigates how the Internet of Things cyber risks can be visualised and mitigated in the process of designing business and supply chain strategies. The emerging DSS methodology present new findings on how digital technologies affect business and supply chain systems. Through epistemological analysis, the article derives with a decision support system for visualising supply chain cyber risk from Internet of Things digital technologies. Such methods do not exist at present and this represents the first attempt to devise a decision support system that would enable practitioners to develop a step by step process for visualising, assessing and mitigating the emerging cyber risk from IoT technologies on shared infrastructure in legacy supply chain systems

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Perspectives of Integrated “Next Industrial Revolution” Clusters in Poland and Siberia

    Get PDF
    Rozdział z: Functioning of the Local Production Systems in Central and Eastern European Countries and Siberia. Case Studies and Comparative Studies, ed. Mariusz E. Sokołowicz.The paper presents the mapping of potential next industrial revolution clusters in Poland and Siberia. Deindustrialization of the cities and struggles with its consequences are one of the fundamental economic problems in current global economy. Some hope to find an answer to that problem is associated with the idea of next industrial revolution and reindustrialization initiatives. In the paper, projects aimed at developing next industrial revolution clusters are analyzed. The objective of the research was to examine new industrial revolution paradigm as a platform for establishing university-based trans-border industry clusters in Poland and Siberia47 and to raise awareness of next industry revolution initiatives.Monograph financed under a contract of execution of the international scientific project within 7th Framework Programme of the European Union, co-financed by Polish Ministry of Science and Higher Education (title: “Functioning of the Local Production Systems in the Conditions of Economic Crisis (Comparative Analysis and Benchmarking for the EU and Beyond”)). Monografia sfinansowana w oparciu o umowę o wykonanie projektu między narodowego w ramach 7. Programu Ramowego UE, współfinansowanego ze środków Ministerstwa Nauki i Szkolnictwa Wyższego (tytuł projektu: „Funkcjonowanie lokalnych systemów produkcyjnych w warunkach kryzysu gospodarczego (analiza porównawcza i benchmarking w wybranych krajach UE oraz krajach trzecich”))

    Internet of Things and Their Coming Perspectives: A Real Options Approach

    Get PDF
    Internet of things is developing at a dizzying rate, and companies are forced to implement it in order to maintain their operational efficiency. The high flexibility inherent to these technologies makes it necessary to apply an appropriate measure, which properly assesses risks and rewards. Real options methodology is available as a tool which fits the conditions, both economic and strategic, under which investment in internet of things technologies is developed. The contribution of this paper is twofold. On the one hand, it offers an adequate tool to assess the strategic value of investment in internet of things technologies. On the other hand, it tries to raise awareness among managers of internet of things technologies because of their potential to contribute to economic and social progress. The results of the research described in this paper highlight the importance of taking action as quickly as possible if companies want to obtain the best possible performance. In order to enhance the understanding of internet of things technologies investment, this paper provides a methodology to assess the implementation of internet of things technologies by using the real options approach; in particular, the option to expand has been proposed for use in the decision-making process

    The new EFQM model: What is really new and could be considered as a suitable tool with respect to Quality 4.0 concept?

    Get PDF
    Purpose: The paper offers a set of original information based on critical analysis of description two last versions of excellence models presented by the European Organisation for Quality Management (EFQM). The principle goal is to present the main advantages and weaknesses of the latest version of The EFQM Model, especially from a practical point of view with respect to a Quality 4.0 era. Methodology/Approach: Comparative analysis of two relevant documents (EFQM, 2012; EFQM, 2019a) was used as a key method. Discussions with 18 quality professionals from Czech production organisations served as a complementary approach. Findings: The basic structure of a new model was completely changed. But the description of certain recommendations by way of guidance points are superficial and confusing. It lays stress on the necessity to transform organisations for the future as well as on comprehensive feedback from key stakeholders. Research Limitation/implication: The latest version of The EFQM Model was published in November 2019, and general knowledge related to this version is naturally limited. Published studies or publicly available experience completely absent. That is why a more in-depth literature review focused on the latest version of The EFQM Model could not be included in this text. Originality/Value of paper: The paper brings an original set of information that was not published yet before. The value of this set should be examined not only from theoretical but primarily from a practical viewpoint.Web of Science241281

    Industrie 4.0 – An empirical and literature-based study how product development is influenced by the digital transformation

    Get PDF
    The fourth industrial revolution, referred to as Industrie 4.0 in the German high-tech strategy, is in most cases associated with the industrialization of production, but the term is increasingly broadly understood. Industrie 4.0 means the networking of all areas involved in the value creation process. In areas such as production and politics, visions are already being driven forward, but in the development of products and product-related services it is often unclear how engineering needs to change to realize the potentials of Industrie 4.0. Several research projects are already dealing with the development of new processes, methods and tools to enable these potentials. However, studies show that companies do not have the resources or strategies to implement such solutions. In many ways, the influence of Industrie 4.0 and its impact on product development is still insufficiently known. Therefore, a literature-based study was conducted to systematically identify context factors that characterize Industrie 4.0. In order to analyze the impact on product development, a second step involved an impact analysis with the context factors of Industrie 4.0 onto the context factors of product development known from the literature. In a third step, strongly influenced fields of product development were identified and their relevance for the realization of the potentials of Industrie 4.0 for product development was evaluated in an online survey. In addition, the current status in these fields was analyzed in interviews with experts from industry. With methods of foresight a portfolio was created, which couples the influence of Industrie 4.0 on the context factors of product development with their future robustness. Comparing the current state of development with the findings from the portfolio, recommendations for future research were formulated

    Evolution of a Lean Smart Maintenance Maturity Model towards the new Age of Industry 4.0

    Get PDF
    Over the last few years, the complexity of asset and maintenance management of industrial plants and machinery in the producing industry has risen due to higher competition and volatile environments. Smart factories, Internet of Things (IoT) and the underlying digitisation of a significant number of processes are changing the way we have to think and work in terms of asset management. Existing Lean Smart Maintenance (LSM) philosophy, which focuses on the cost-efficient (lean) and the learning organisation (smart) perspectives enables a value-oriented, dynamic, and smart maintenance/asset management. The associated LSM maturity model is the evaluation tool that contains the normative, strategic, and operational aspects of industrial asset management, based on which numerous reorganisation projects have already been carried out in industrial companies. However, due to the ever-increasing development of Industry 4.0 (I4.0), it is necessary to extend the model by selected aspects of digitisation and digitalisation. Based on a structured literature review (SLR) of state of the art I4.0 maturity models, we were able to investigate the essential maturity items for I4.0. To restructure and expand the existing LSM maturity model, the principle of design science research (DSR) was used. The architecture of the LSM maturity model was based on the structure of the Capability Maturity Model Integration (CMMI). Further development of a Lean Smart Maintenance maturity model thus covers the future requirements of I4.0 and data science. It was possible to enhance existing categories with new artefacts from the I4.0 range to represent the influence of cyber-physical systems (CPS), (big) data and information management, condition monitoring (CM) and more. Furthermore, the originally defined LSM-Model was restructured for a more simplified application in industrial use cases

    A tool for holistic assessment of digitalization capabilities in manufacturing SMEs

    Get PDF
    In a constantly evolving global market, manufacturing companies need to be flexible and adaptive to survive. Digital twins of production systems have been proposed as one part of the solution, however this comes with multiple challenges. Manufacturing SMEs have limited resources and need to direct their efforts in this area wisely. This paper presents a tool for holistic assessment of an SME manufacturer\u27s level of digitalization, in order to visualize current gaps and guide digitalization efforts over a production system\u27s life cycle. The tool was empirically developed together with Manufacturing SMEs and has strengthened their digitalization awareness and capabilities

    Industry 4.0 Scenario Planning: How will the industry 4.0 transformations affect SMEs in Germany by 2030?

    Get PDF
    Digitalization is invading every aspect of our lives and modern technologies are at the helm of much disruptive change in all spheres of life. Hailed as the 4th industrial revolution every company has a mind to understand the implications of the Industry 4.0 suit of technologies and their multiple innovative applications for its operations. In this paper, we explore how the industry 4.0 transformation might affect Small and Medium sized enterprises in Germany over a 15-year horizon. We focus on SMEs because they play a significant role in ensuring the prosperity of Germany as a global industrial and economic powerhouse. We develop alternative pictures of the possible futures using the foresight technique of Scenario planning in which the factors that shape the business environment SMEs and indeed all companies operate in are identified and used to build the most plausible alternative realities. The outcome is four distinct scenarios that reflect the possible growth trajectories regarding the impending transformation for SMEs
    corecore