8,443 research outputs found

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    A Survey on Bayesian Deep Learning

    Full text link
    A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.Comment: To appear in ACM Computing Surveys (CSUR) 202

    Towards Integration of Artificial Intelligence into Medical Devices as a Real-Time Recommender System for Personalised Healthcare:State-of-the-Art and Future Prospects

    Get PDF
    In the era of big data, artificial intelligence (AI) algorithms have the potential to revolutionize healthcare by improving patient outcomes and reducing healthcare costs. AI algorithms have frequently been used in health care for predictive modelling, image analysis and drug discovery. Moreover, as a recommender system, these algorithms have shown promising impacts on personalized healthcare provision. A recommender system learns the behaviour of the user and predicts their current preferences (recommends) based on their previous preferences. Implementing AI as a recommender system improves this prediction accuracy and solves cold start and data sparsity problems. However, most of the methods and algorithms are tested in a simulated setting which cannot recapitulate the influencing factors of the real world. This review article systematically reviews prevailing methodologies in recommender systems and discusses the AI algorithms as recommender systems specifically in the field of healthcare. It also provides discussion around the most cutting-edge academic and practical contributions present in the literature, identifies performance evaluation matrices, challenges in the implementation of AI as a recommender system, and acceptance of AI-based recommender systems by clinicians. The findings of this article direct researchers and professionals to comprehend currently developed recommender systems and the future of medical devices integrated with real-time recommender systems for personalized healthcare

    Tag based Bayesian latent class models for movies : economic theory reaches out to big data science

    Get PDF
    For the past 50 years, cultural economics has developed as an independent research specialism. At its core are the creative industries and the peculiar economics associated with them, central to which is a tension that arises from the notion that creative goods need to be experienced before an assessment can be made about the utility they deliver to the consumer. In this they differ from the standard private good that forms the basis of demand theory in economic textbooks, in which utility is known ex ante. Furthermore, creative goods are typically complex in composition and subject to heterogeneous and shifting consumer preferences. In response to this, models of linear optimization, rational addiction and Bayesian learning have been applied to better understand consumer decision- making, belief formation and revision. While valuable, these approaches do not lend themselves to forming verifiable hypothesis for the critical reason that they by-pass an essential aspect of creative products: namely, that of novelty. In contrast, computer sciences, and more specifically recommender theory, embrace creative products as a study object. Being items of online transactions, users of creative products share opinions on a massive scale and in doing so generate a flow of data driven research. Not limited by the multiple assumptions made in economic theory, data analysts deal with this type of commodity in a less constrained way, incorporating the variety of item characteristics, as well as their co-use by agents. They apply statistical techniques supporting big data, such as clustering, latent class analysis or singular value decomposition. This thesis is drawn from both disciplines, comparing models, methods and data sets. Based upon movie consumption, the work contrasts bottom-up versus top-down approaches, individual versus collective data, distance measures versus the utility-based comparisons. Rooted in Bayesian latent class models, a synthesis is formed, supported by the random utility theory and recommender algorithm methods. The Bayesian approach makes explicit the experience good nature of creative goods by formulating the prior uncertainty of users towards both movie features and preferences. The latent class method, thus, infers the heterogeneous aspect of preferences, while its dynamic variant- the latent Markov model - gets around one of the main paradoxes in studying creative products: how to analyse taste dynamics when confronted with a good that is novel at each decision point. Generated by mainly movie-user-rating and movie-user-tag triplets, collected from the Movielens recommender system and made available as open data for research by the GroupLens research team, this study of preference patterns formation for creative goods is drawn from individual level data

    Leveraging Deep Learning Techniques on Collaborative Filtering Recommender Systems

    Full text link
    With the exponentially increasing volume of online data, searching and finding required information have become an extensive and time-consuming task. Recommender Systems as a subclass of information retrieval and decision support systems by providing personalized suggestions helping users access what they need more efficiently. Among the different techniques for building a recommender system, Collaborative Filtering (CF) is the most popular and widespread approach. However, cold start and data sparsity are the fundamental challenges ahead of implementing an effective CF-based recommender. Recent successful developments in enhancing and implementing deep learning architectures motivated many studies to propose deep learning-based solutions for solving the recommenders' weak points. In this research, unlike the past similar works about using deep learning architectures in recommender systems that covered different techniques generally, we specifically provide a comprehensive review of deep learning-based collaborative filtering recommender systems. This in-depth filtering gives a clear overview of the level of popularity, gaps, and ignored areas on leveraging deep learning techniques to build CF-based systems as the most influential recommenders.Comment: 24 pages, 14 figure

    Implementation of a personalized food recommendation system based on collaborative filtering and knapsack method

    Get PDF
    Food recommendation system is one of the most interesting recommendation problems since it provides data for decision-making to users on selection of foods that meets individual preference of each user. Personalized recommender system has been used to recommend foods or menus to respond to requirements and restrictions of each user in a better way. This research study aimed to develop a personalized healthy food recommendation system based on collaborative filtering and knapsack method. Assessment results found that users were satisfied with the personalized healthy food recommendation system based on collaborative filtering and knapsack problem algorithm which included ability of operating system, screen design, and efficiency of operating system. The average satisfaction score overall was 4.20 implying that users had an excellent level of satisfaction

    The Right to be an Exception to Predictions: a Moral Defense of Diversity in Recommendation Systems

    Full text link
    Recommendation systems (RSs) predict what the user likes and recommend it to them. While at the onset of RSs, the latter was designed to maximize the recommendation accuracy (i.e., accuracy was their  only goal), nowadays many RSs models include diversity in recommendations (which thus is a further goal of RSs). In the computer science community, the introduction of diversity in RSs is justified mainly through economic reasons: diversity increases user satisfaction and, in niche markets, profits.I contend that, first, the economic justification of diversity in RSs risks reducing it to an empirical matter of preference; second, diversity is ethically relevant as it supports two autonomy rights of the user: the right to an open present and the right to be treated as an individual. So far, diversity in RSs has been morally defended only in the case of RSs of news and scholarly content: diversity is held to have a depolarizing effect in a democratic society and the scientific community and make the users more autonomous in their news choices. I provide a justification of diversity in RSs that embraces all kinds of RSs (i.e., a holistic moral defense) and is based on a normative principle founded on the agency of the user, which I call the right to be an exception to predictions. Such a right holds that the proper treatment of a RS user qua agent forbids providing them with recommendations based only on their past or similar users’ choices

    When autoencoders meet recommender systems : COFILS approach

    Get PDF
    Collaborative Filtering to Supervised Learning (COFILS) transforms a Collaborative Filtering (CF) problem into classical Supervised Learning (SL) problem. Applying COFILS reduce data sparsity and make it possible to test a variety of SL algorithms rather than matrix decomposition methods. It main steps are: extraction, mapping and prediction. Firstly, a Singular Value Decomposition (SVD) generates a set of latent variables from a ratings matrix. Next, on the mapping phase, a new data set is generated where each sample contains a set of latent variables from an user and it rated item; and a target that corresponds the user rating for that item. Finally, on the last phase, a SL algorithm is applied. One problem of COFILS is it’s dependency on SVD, that is not able to extract non-linear features from data and it is not robust to noisy data. To address this problem, we propose switching SVD to a Stacked Denoising Autoencoder (SDA) on the first phase of COFILS. With SDA, more useful and complex representations can be learned in a Deep Network with a local denoising criterion. We test our novel technique, namely Deep Learning COFILS (DL-COFILS), on MovieLens, R3 Yahoo! Music and Movie Tweetings data sets and compare to COFILS, as a baseline, and state of the art CF techniques. Our results indicate that DL-COFILS outperforms COFILS for all the data sets and with an improvement up to 5.9%. Also, DL-COFILS achieves the best result for the MovieLens 100k data set and ranks on the top three algorithms for these data sets. Thus, we show that DL-COFILS represents an advance on COFILS methodology, improving it’s results and that is a suitable method for CF problem.Collaborative Filtering to Supervised Learning (COFILS) transforma um problema de filtragem colaborativa (CF) em um problema clássico de aprendizado supervisionado (SL). Sua aplicação reduz a esparsidade e torna possível a utilização de variados algoritmos de SL em oposição aos métodos de decomposição de matrizes. Primeiramente, a Decomposição em Valores Singulares (SVD) gera um conjunto de variáveis latentes a partir da matriz de avaliações. Na fase de mapeamento, um novo conjunto de dados é gerado, do qual cada amostra contém um conjunto de variáveis latentes de um usuário e do item avaliado; e um valor que corresponde a avaliação que o usuário atribuiu a esse item. Por fim, o algoritmo de SL é aplicado. Um ponto negativo do COFILS é sua dependência ao SVD, incapaz de extrair características não-lineares e sem robustez `a dados ruidosos. Nesse caso, propomos a troca do SVD por um Stacked Denoising Autoencoder (SDA). Com o uso de um SDA, representações mais úteis e complexas podem ser aprendidas em uma rede neural profunda com um critério local de remoção de ruído. Executamos nossa técnica, chamada Deep Learning COFILS (DL-COFILS), nos conjuntos de dados MovieLens, R3 Yahoo! Music e Movie Tweetings comparando os resultados com o COFILS padrão, como baseline, e demais técnicas de estado da arte de CF. Com os resultados obtidos, é possível mencionar que DL-COFILS supera COFILS para todos os conjuntos de dados, com uma melhora de até 5.9%. Além disso, o DLCOFILS alcança o melhor resultado para o MovieLens 100k e se encontra entre os três melhores algoritmos nos demais conjuntos de dados. Dessa forma, mostraremos que DL-COFILS representa um avanço na metodologia COFILS, melhorando seus resultados e se mostrando um método adequado para CF
    • …
    corecore