283 research outputs found

    Extending the Foundational Model of Anatomy with Automatically Acquired Spatial Relations

    Get PDF
    Formal ontologies have made significant impact in bioscience over the last ten years. Among them, the Foundational Model of Anatomy Ontology (FMA) is the most comprehensive model for the spatio-structural representation of human anatomy. In the research project MEDICO we use the FMA as our main source of background knowledge about human anatomy. Our ultimate goals are to use spatial knowledge from the FMA (1) to improve automatic parsing algorithms for 3D volume data sets generated by Computed Tomography and Magnetic Resonance Imaging and (2) to generate semantic annotations using the concepts from the FMA to allow semantic search on medical image repositories. We argue that in this context more spatial relation instances are needed than those currently available in the FMA. In this publication we present a technique for the automatic inductive acquisition of spatial relation instances by generalizing from expert-annotated volume datasets

    HyDRA Hybrid workflow Design Recommender Architecture

    Get PDF
    Workflows are a way to describe a series of computations on raw e-Science data. These data may be MRI brain scans, data from a high energy physics detector or metric data from an earth observation project. In order to derive meaningful knowledge from the data, it must be processed and analysed. Workflows have emerged as the principle mechanism for describing and enacting complex e-Science analyses on distributed infrastructures such as grids. Scientific users face a number of challenges when designing workflows. These challenges include selecting appropriate components for their tasks, spec- ifying dependencies between them and selecting appropriate parameter values. These tasks become especially challenging as workflows become increasingly large. For example, the CIVET workflow consists of up to 108 components. Building the workflow by hand and specifying all the links can become quite cumbersome for scientific users.Traditionally, recommender systems have been employed to assist users in such time-consuming and tedious tasks. One of the techniques used by recommender systems has been to predict what the user is attempting to do using a variety of techniques. These techniques include using workflow se- mantics on the one hand and historical usage patterns on the other. Semantics-based systems attempt to infer a user’s intentions based on the available semantics. Pattern-based systems attempt to extract usage patterns from previously-constructed workflows and match those patterns to the workflow un- der construction. The use of historical patterns adds dynamism to the suggestions as the system can learn and adapt with “experience”. However, in cases where there are no previous patterns to draw upon, pattern-based systems fail to perform. Semantics-based systems, on the other hand infer from static information, so they always have something to draw upon. However, that information first has to be encoded into the semantic repository for the system to draw upon it, which is a time-consuming and tedious task in it self. Moreover, semantics-based systems do not learn and adapt with experience. Both approaches have distinct, but complementary features and drawbacks. By combining the two approaches, the drawbacks of each approach can be addressed.This thesis presents HyDRA, a novel hybrid framework that combines frequent usage patterns and workflow semantics to generate suggestions. The functions performed by the framework include; a) extracting frequent functional usage patterns; b) identifying the semantics of unknown components; and c) generating accurate and meaningful suggestions. Challenges to mining frequent patterns in- clude ensuring that meaningful and useful patterns are extracted. For this purpose only patterns that occur above a minimum frequency threshold are mined. Moreover, instead of just groups of specific components, the pattern mining algorithm takes into account workflow component semantics. This allows the system to identify different types of components that perform a single composite function. One of the challenges in maintaining a semantic repository is to keep the repository up-to-date. This involves identifying new items and inferring their semantics. In this regard, a minor contribution of this research is a semantic inference engine that is responsible for function b). This engine also uses pre-defined workflow component semantics to infer new semantic properties and generate more accurate suggestions. The overall suggestion generation algorithm is also presented.HyDRA has been evaluated using workflows from the Laboratory of Neuro Imaging (LONI) repos- itory. These workflows have been chosen for their structural and functional characteristics that help� to evaluate the framework in different scenarios. The system is also compared with another existing pattern-based system to show a clear improvement in the accuracy of the suggestions generated

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Sistemas interativos e distribuídos para telemedicina

    Get PDF
    doutoramento Ciências da ComputaçãoDurante as últimas décadas, as organizações de saúde têm vindo a adotar continuadamente as tecnologias de informação para melhorar o funcionamento dos seus serviços. Recentemente, em parte devido à crise financeira, algumas reformas no sector de saúde incentivaram o aparecimento de novas soluções de telemedicina para otimizar a utilização de recursos humanos e de equipamentos. Algumas tecnologias como a computação em nuvem, a computação móvel e os sistemas Web, têm sido importantes para o sucesso destas novas aplicações de telemedicina. As funcionalidades emergentes de computação distribuída facilitam a ligação de comunidades médicas, promovem serviços de telemedicina e a colaboração em tempo real. Também são evidentes algumas vantagens que os dispositivos móveis podem introduzir, tais como facilitar o trabalho remoto a qualquer hora e em qualquer lugar. Por outro lado, muitas funcionalidades que se tornaram comuns nas redes sociais, tais como a partilha de dados, a troca de mensagens, os fóruns de discussão e a videoconferência, têm o potencial para promover a colaboração no sector da saúde. Esta tese teve como objetivo principal investigar soluções computacionais mais ágeis que permitam promover a partilha de dados clínicos e facilitar a criação de fluxos de trabalho colaborativos em radiologia. Através da exploração das atuais tecnologias Web e de computação móvel, concebemos uma solução ubíqua para a visualização de imagens médicas e desenvolvemos um sistema colaborativo para a área de radiologia, baseado na tecnologia da computação em nuvem. Neste percurso, foram investigadas metodologias de mineração de texto, de representação semântica e de recuperação de informação baseada no conteúdo da imagem. Para garantir a privacidade dos pacientes e agilizar o processo de partilha de dados em ambientes colaborativos, propomos ainda uma metodologia que usa aprendizagem automática para anonimizar as imagens médicasDuring the last decades, healthcare organizations have been increasingly relying on information technologies to improve their services. At the same time, the optimization of resources, both professionals and equipment, have promoted the emergence of telemedicine solutions. Some technologies including cloud computing, mobile computing, web systems and distributed computing can be used to facilitate the creation of medical communities, and the promotion of telemedicine services and real-time collaboration. On the other hand, many features that have become commonplace in social networks, such as data sharing, message exchange, discussion forums, and a videoconference, have also the potential to foster collaboration in the health sector. The main objective of this research work was to investigate computational solutions that allow us to promote the sharing of clinical data and to facilitate the creation of collaborative workflows in radiology. By exploring computing and mobile computing technologies, we have designed a solution for medical imaging visualization, and developed a collaborative system for radiology, based on cloud computing technology. To extract more information from data, we investigated several methodologies such as text mining, semantic representation, content-based information retrieval. Finally, to ensure patient privacy and to streamline the data sharing in collaborative environments, we propose a machine learning methodology to anonymize medical images

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments
    corecore