4,333 research outputs found

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine

    Get PDF
    Increasing efficiency and quality demands of modern Internet technologies drive today’s network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature

    Envisioning Model-Based Performance Engineering Frameworks.

    Get PDF
    Abstract Our daily activities depend on complex software systems that must guarantee certain performance. Several approaches have been devised in the last decade to validate software systems against performance requirements. However, software designers still encounter problems in the interpretation of performance analysis results (e.g., mean values, probability distribution functions) and in the definition of design alternatives (e.g., to split a software component in two and redeploy one of them) aimed at fulfilling performance requirements. This paper describes a general model-based performance engineering framework to support designers in dealing with such problems aimed at enhancing the system. The framework relies on a formalization of the knowledge needed in order to characterize performance flaws and provide alternative system design. Such knowledge can be instantiated based on the techniques devised for interpreting performance analysis results and providing feedback to designers. Three techniques are considered in this paper for instantiating the framework and the main challenges to face during such process are pointed out and discussed
    • …
    corecore