303 research outputs found

    A Machine-Checked Formalization of the Generic Model and the Random Oracle Model

    Get PDF
    Most approaches to the formal analyses of cryptographic protocols make the perfect cryptography assumption, i.e. the hypothese that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to rely on a weaker hypothesis on the computational cost of gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by the Generic Model and the Random Oracle Model which provide non-standard computational models in which one may reason about the computational cost of breaking a cryptographic scheme. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Mode

    Authenticated wireless roaming via tunnels : making mobile guests feel at home

    Get PDF
    In wireless roaming a mobile device obtains a service from some foreign network while being registered for the similar service at its own home network. However, recent proposals try to keep the service provider role behind the home network and let the foreign network create a tunnel connection through which all service requests of the mobile device are sent to and answered directly by the home network. Such Wireless Roaming via Tunnels (WRT) others several (security) benefits but states also new security challenges on authentication and key establishment, as the goal is not only to protect the end-to-end communication between the tunnel peers but also the tunnel itself. In this paper we formally specify mutual authentication and key establishment goals for WRT and propose an efficient and provably secure protocol that can be used to secure such roaming session. Additionally, we describe some modular protocol extensions to address resistance against DoS attacks, anonymity of the mobile device and unlinkability of its roaming sessions, as well as the accounting claims of the foreign network in commercial scenarios

    Structured Intuition: A Methodology to Analyse Entity Authentication

    Get PDF

    Securing Remote Access Inside Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) that are being increasingly deployed in communities and public places provide a relatively stable routing infrastructure and can be used for diverse carrier-managed services. As a particular example we consider the scenario where a mobile device initially registered for the use with one wireless network (its home network) moves to the area covered by another network inside the same mesh. The goal is to establish a secure access to the home network using the infrastructure of the mesh. Classical mechanisms such as VPNs can protect end-to-end communication between the mobile device and its home network while remaining transparent to the routing infrastructure. In WMNs this transparency can be misused for packet injection leading to the unnecessary consumption of the communication bandwidth. This may have negative impact on the cooperation of mesh routers which is essential for the connection establishment. In this paper we describe how to establish remote connections inside WMNs while guaranteeing secure end-to-end communication between the mobile device and its home network and secure transmission of the corresponding packets along the underlying multi-hop path. Our solution is a provably secure, yet lightweight and round-optimal remote network access protocol in which intermediate mesh routers are considered to be part of the security architecture. We also sketch some ideas on the practical realization of the protocol using known standards and mention extensions with regard to forward secrecy, anonymity and accounting

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    The Role of the Adversary Model in Applied Security Research

    Get PDF
    Adversary models have been integral to the design of provably-secure cryptographic schemes or protocols. However, their use in other computer science research disciplines is relatively limited, particularly in the case of applied security research (e.g., mobile app and vulnerability studies). In this study, we conduct a survey of prominent adversary models used in the seminal field of cryptography, and more recent mobile and Internet of Things (IoT) research. Motivated by the findings from the cryptography survey, we propose a classification scheme for common app-based adversaries used in mobile security research, and classify key papers using the proposed scheme. Finally, we discuss recent work involving adversary models in the contemporary research field of IoT. We contribute recommendations to aid researchers working in applied (IoT) security based upon our findings from the mobile and cryptography literature. The key recommendation is for authors to clearly define adversary goals, assumptions and capabilities

    Nonce-based Kerberos is a Secure Delegated AKE Protocol

    Get PDF
    Kerberos is one of the most important cryptographic protocols, first because it is the basisc authentication protocol in Microsoft\u27s Active Directory and shipped with every major operating system, and second because it served as a model for all Single-Sign-On protocols (e.g. SAML, OpenID, MS Cardspace, OpenID Connect). Its security has been confirmed with several Dolev-Yao style proofs, and attacks on certain versions of the protocol have been described. However despite its importance, despite its longevity, and despite the wealth of Dolev-Yao-style security proofs, no reduction based security proof has been published until now. This has two reasons: (1) All widely accepted formal models either deal with two-party protocols, or group key agreement protocols (where all entities have the same role), but not with 3-party protocols where each party has a different role. (2) Kerberos uses timestamps and nonces, and formal security models for timestamps are not well understood up to now. As a step towards a full security proof of Kerberos, we target problem (1) here: We propose a variant of the Kerberos protocol, where nonces are used instead of timestamps. This requires one additional protocol message, but enables a proof in the standard Bellare-Rogaway (BR) model. The key setup and the roles of the different parties are identical to the original Kerberos protocol. For our proof, we only require that the authenticated encryption and the message authentication code (MAC) schemes are secure. Under these assumptions we show that the probability that a client or server process oracle accepts maliciously, and the advantage of an adversary trying to distinguish a real Kerberos session key from a random value, are both negligible. One main idea in the proof is to model the Kerberos server a a public oracle, so that we do not have to consider the security of the connection client--Kerberos. This idea is only applicable to the communication pattern adapted by Kerberos, and not to other 3-party patterns (e.g. EAP protocols)

    EasyUC: using EasyCrypt to mechanize proofs of universally composable security

    Get PDF
    We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.Accepted manuscrip
    • 

    corecore