3,361 research outputs found

    An Ontological Approach to Representing the Product Life Cycle

    Get PDF
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of life. We call this suite the Product Life Cycle (PLC) Ontologies. The suite extends proximately from The Common Core Ontologies (CCO) used widely in defense and intelligence circles, and ultimately from the Basic Formal Ontology (BFO), which serves as top level ontology for the CCO and for some 300 further ontologies. The PLC Ontologies were developed together, but they have been factored to cover particular domains such as design, manufacturing processes, and tools. We argue that these ontologies, when used together with standard public domain alignment and browsing tools created within the context of the Semantic Web, may offer a low-cost approach to solving increasingly costly problems of data management in the manufacturing industry

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation

    A manufacturing core concepts ontology to support knowledge sharing

    Get PDF
    Knowledge sharing across domains is key to bringing down the cost of production and the time to market of products. This thesis is directed to improve the knowledge sharing capability of the present systems that use information and communication technologies. Systems for different domains have structures that are made up of concepts and relations with different semantic interpretations. Therefore, knowledge sharing across such domains becomes an issue. Knowledge sharing across multiple domains can be facilitated through a system that can provide a shared understanding across multiple domains. This requires a rigorous common semantic base underlying the domains across which to share knowledge. [Continues.

    Extending product lifecycle management for manufacturing knowledge sharing

    Get PDF
    Product lifecycle management provides a framework for information sharing that promotes various types of decisionmaking procedures. For product lifecycle management to advance towards knowledge-driven decision support, then this demands more than simply exchanging information. There is, therefore, a need to formally capture best practice through-life engineering knowledge that can be fed back across the product lifecycle. This article investigates the interoperable manufacturing knowledge systems concept. Interoperable manufacturing knowledge systems use an expressive ontological approach that drives the improved configuration of product lifecycle management systems for manufacturing knowledge sharing. An ontology of relevant core product lifecycle concepts is identified from which viewpoint-specific domains, such as design and manufacture, can be formalised. Essential ontology-based mechanisms are accommodated to support the verification and sharing of manufacturing knowledge across domains. The work has been experimentally assessed using an aerospace compressor disc design and manufacture example. While it has been demonstrated that the approach supports the representation of disparate design and manufacture perspectives as well as manufacturing knowledge feedback in a timely manner, areas for improvement have also been identified for future work

    Reference ontologies for interoperability across multiple assembly systems

    Get PDF
    The role of information and communication technologies (ICTs) is crucial for future manufacturing organisations in order to support effective collaboration and information sharing. However, the contemporary ICT-based systems lack the required ability to adequately support interoperability across multiple domain systems. The capability of such ICT-based systems to interoperate is impeded by the semantic conflicts arising from loosely defined meanings and intents of the participating system concepts. The aim of this paper is to investigate the interoperability of assembly systems at multiple levels of concept specialisations using the concept of a formal reference ontology. Formal ontologies are providing a promising way to computationally capture the domain meanings which can subsequently provide a base to support interoperability across multiple systems and in our case multiple assembly systems. This paper takes the example of manufacturing bill of materials concept and three different domain-specific interpretations to explore and demonstrate the potential of formal reference ontologies to support interoperability

    Reference ontologies to support the development of global production network systems

    Get PDF
    In competitive and time sensitive market places, organisations are tasked with providing product lifecycle management (PLM) approaches to achieve and maintain competitive advantage, react to change and understand the balance of possible options when making decisions on complex multi-faceted problems, global production networks (GPN) is one such domain in which this applies. When designing and configuring GPN to develop, manufacture and deliver product–service provision, information requirements that affect decision making become more complex. The application of reference ontologies to a domain and its related information requirements can enhance and accelerate the development of new product-service systems with a view towards the seamless interchange of information or interoperability between systems and domains. This paper presents (i) preliminary results for the capture and modelling of end-user information, (ii) an initial higher level reference core ontology for the development of reference ontologies and (iii) the formal logical modelling of Level 1 of the FLEXINET reference ontology using a Common Logic based approach

    A reference ontology approach to support global product-service production

    Get PDF
    The need to innovate and compete drives organisations to constantly seek new approaches to facilitate business and commerce. As market places become ever more globalised and digital economies grow, these organisations rely more heavily upon systems to design and deliver their products and services. Hence, when developing and operating a global production network the need for systems to interoperate between different domains and contexts within a global production network becomes paramount if organisations are to succeed. This paper puts forwards a reference ontology that has been developed to enable the interoperation of software tools involved in the global production of new product-services systems (PSS). It sets out the levels of the reference ontology, detailing closely the product-service aspects. This has been developed using a formal logic based approach. An example knowledge base has been created from industrial end user information with queries applied to this to provide a set of results showing the ability of the reference ontology

    Towards an Assembly Reference Ontology for Assembly Knowledge Sharing

    Get PDF
    Information and Communication Technologies (ICT) have been increasingly used to support the decision making in manufacturing organizations however they lack the ability to fully support the capture and sharing of specific domain knowledge across multiple domains. The ability of ICT based systems to share knowledge is impeded by the semantic conflicts arising from loosely defined meanings and intents of the participating concepts. This research work exploits the concept of formal ontologies to rigorously define the semantics of domain concepts to support knowledge sharing within the assembly domain. In this thesis, a novel research framework has been proposed in the form of a assembly reference ontology which can provide a common semantic base to support knowledge sharing across the assembly design and assembly process planning domains. The framework consists of a set of key reference concepts identified to represent the assembly domain related knowledge. These concepts have been specialized from the most generic level to the most specialized level and have been formally defined to support the capture and sharing of assembly knowledge. The proposed framework also supports the creation of application specific ontologies by providing them with a common semantic base. The research concept has been experimentally investigated by using a selected set of assembly reference concepts which have been used to formally represent and relate assembly design and assembly process planning knowledge. The results of the experiments verify that the implemented ontology facilitates the system to understand the semantics of concepts and supports knowledge sharing across the assembly design and assembly process planning domains. The experimental results also show that the proposed framework can also support the development of a range of application specific ontologies
    • …
    corecore