640 research outputs found

    A memetic algorithm for the university course timetabling problem

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe design of course timetables for academic institutions is a very hectic job due to the exponential number of possible feasible timetables with respect to the problem size. This process involves lots of constraints that must be respected and a huge search space to be explored, even if the size of the problem input is not significantly large. On the other hand, the problem itself does not have a widely approved definition, since different institutions face different variations of the problem. This paper presents a memetic algorithm that integrates two local search methods into the genetic algorithm for solving the university course timetabling problem (UCTP). These two local search methods use their exploitive search ability to improve the explorative search ability of genetic algorithms. The experimental results indicate that the proposed memetic algorithm is efficient for solving the UCTP

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Constructing constrained-version of magic squares using selection hyper-heuristics

    Get PDF
    A square matrix of distinct numbers in which every row, column and both diagonals have the same total is referred to as a magic square. Constructing a magic square of a given order is considered a difficult computational problem, particularly when additional constraints are imposed. Hyper-heuristics are emerging high-level search methodologies that explore the space of heuristics for solving a given problem. In this study, we present a range of effective selection hyper-heuristics mixing perturbative low-level heuristics for constructing the constrained version of magic squares. The results show that selection hyper-heuristics, even the non-learning ones deliver an outstanding performance, beating the best-known heuristic solution on average

    An iterated multi-stage selection hyper-heuristic

    Get PDF
    There is a growing interest towards the design of reusable general purpose search methods that are applicable to different problems instead of tailored solutions to a single particular problem. Hyper-heuristics have emerged as such high level methods that explore the space formed by a set of heuristics (move operators) or heuristic components for solving computationally hard problems. A selection hyper-heuristic mixes and controls a predefined set of low level heuristics with the goal of improving an initially generated solution by choosing and applying an appropriate heuristic to a solution in hand and deciding whether to accept or reject the new solution at each step under an iterative framework. Designing an adaptive control mechanism for the heuristic selection and combining it with a suitable acceptance method is a major challenge, because both components can influence the overall performance of a selection hyper-heuristic. In this study, we describe a novel iterated multi-stage hyper-heuristic approach which cycles through two interacting hyper-heuristics and operates based on the principle that not all low level heuristics for a problem domain would be useful at any point of the search process. The empirical results on a hyper-heuristic benchmark indicate the success of the proposed selection hyper-heuristic across six problem domains beating the state-of-the-art approach

    Myths and Legends of the Baldwin Effect

    Get PDF
    This position paper argues that the Baldwin effect is widely misunderstood by the evolutionary computation community. The misunderstandings appear to fall into two general categories. Firstly, it is commonly believed that the Baldwin effect is concerned with the synergy that results when there is an evolving population of learning individuals. This is only half of the story. The full story is more complicated and more interesting. The Baldwin effect is concerned with the costs and benefits of lifetime learning by individuals in an evolving population. Several researchers have focussed exclusively on the benefits, but there is much to be gained from attention to the costs. This paper explains the two sides of the story and enumerates ten of the costs and benefits of lifetime learning by individuals in an evolving population. Secondly, there is a cluster of misunderstandings about the relationship between the Baldwin effect and Lamarckian inheritance of acquired characteristics. The Baldwin effect is not Lamarckian. A Lamarckian algorithm is not better for most evolutionary computing problems than a Baldwinian algorithm. Finally, Lamarckian inheritance is not a better model of memetic (cultural) evolution than the Baldwin effect

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    A greedy gradient-simulated annealing hyper-heuristic for a curriculum-based course timetabling problem

    Get PDF
    Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.12th UK Workshop on Computational Intelligence (UKCI), Edinburgh, Scotland, 5-7 September 2012The course timetabling problem is a well known constraint optimization problem which has been of interest to researchers as well as practitioners. Due to the NP-hard nature of the problem, the traditional exact approaches might fail to find a solution even for a given instance. Hyper-heuristics which search the space of heuristics for high quality solutions are alternative methods that have been increasingly used in solving such problems. In this study, a curriculum based course timetabling problem at Yeditepe University is described. An improvement oriented heuristic selection strategy combined with a simulated annealing move acceptance as a hyper-heuristic utilizing a set of low level constraint oriented neighbourhood heuristics is investigated for solving this problem. The proposed hyper-heuristic was initially developed to handle a variety of problems in a particular domain with different properties considering the nature of the low level heuristics. On the other hand, a goal of hyper-heuristic development is to build methods which are general. Hence, the proposed hyper-heuristic is applied to six other problem domains and its performance is compared to different state-of-the-art hyper-heuristics to test its level of generality. The empirical results show that the proposed method is sufficiently general and powerful

    A tensor-based selection hyper-heuristic for cross-domain heuristic search

    Get PDF
    Hyper-heuristics have emerged as automated high level search methodologies that manage a set of low level heuristics for solving computationally hard problems. A generic selection hyper-heuristic combines heuristic selection and move acceptance methods under an iterative single point-based search framework. At each step, the solution in hand is modified after applying a selected heuristic and a decision is made whether the new solution is accepted or not. In this study, we represent the trail of a hyper-heuristic as a third order tensor. Factorization of such a tensor reveals the latent relationships between the low level heuristics and the hyper-heuristic itself. The proposed learning approach partitions the set of low level heuristics into two subsets where heuristics in each subset are associated with a separate move acceptance method. Then a multi-stage hyper-heuristic is formed and while solving a given problem instance, heuristics are allowed to operate only in conjunction with the associated acceptance method at each stage. To the best of our knowledge, this is the first time tensor analysis of the space of heuristics is used as a data science approach to improve the performance of a hyper-heuristic in the prescribed manner. The empirical results across six different problem domains from a benchmark indeed indicate the success of the proposed approach

    Hybrid meta-heuristics for combinatorial optimization

    Get PDF
    Combinatorial optimization problems arise, in many forms, in vari- ous aspects of everyday life. Nowadays, a lot of services are driven by optimization algorithms, enabling us to make the best use of the available resources while guaranteeing a level of service. Ex- amples of such services are public transportation, goods delivery, university time-tabling, and patient scheduling. Thanks also to the open data movement, a lot of usage data about public and private services is accessible today, sometimes in aggregate form, to everyone. Examples of such data are traffic information (Google), bike sharing systems usage (CitiBike NYC), location services, etc. The availability of all this body of data allows us to better understand how people interacts with these services. However, in order for this information to be useful, it is necessary to develop tools to extract knowledge from it and to drive better decisions. In this context, optimization is a powerful tool, which can be used to improve the way the available resources are used, avoid squandering, and improve the sustainability of services. The fields of meta-heuristics, artificial intelligence, and oper- ations research, have been tackling many of these problems for years, without much interaction. However, in the last few years, such communities have started looking at each other’s advance- ments, in order to develop optimization techniques that are faster, more robust, and easier to maintain. This effort gave birth to the fertile field of hybrid meta-heuristics.openDottorato di ricerca in Ingegneria industriale e dell'informazioneopenUrli, Tommas
    corecore