14,439 research outputs found

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    Algorithm engineering for optimal alignment of protein structure distance matrices

    Get PDF
    Protein structural alignment is an important problem in computational biology. In this paper, we present first successes on provably optimal pairwise alignment of protein inter-residue distance matrices, using the popular Dali scoring function. We introduce the structural alignment problem formally, which enables us to express a variety of scoring functions used in previous work as special cases in a unified framework. Further, we propose the first mathematical model for computing optimal structural alignments based on dense inter-residue distance matrices. We therefore reformulate the problem as a special graph problem and give a tight integer linear programming model. We then present algorithm engineering techniques to handle the huge integer linear programs of real-life distance matrix alignment problems. Applying these techniques, we can compute provably optimal Dali alignments for the very first time

    Pockets as structural descriptors of EGFR kinase conformations

    Get PDF
    Epidermal Growth Factor Receptor (EGFR), a tyrosine kinase receptor, is one of the main tumor markers in different types of cancers. The kinase native state is mainly composed of two populations of conformers: active and inactive. Several sequence variations in EGFR kinase region promote the differential enrichment of conformers with higher activity. Some structural characteristics have been proposed to differentiate kinase conformations, but these considerations could lead to ambiguous classifications. We present a structural characterisation of EGFR kinase conformers, focused on active site pocket comparisons, and the mapping of known pathological sequence variations. A structural based clustering of this pocket accurately discriminates active from inactive, well-characterised conformations. Furthermore, this main pocket contains, or is in close contact with, ≈65% of cancer-related variation positions. Although the relevance of protein dynamics to explain biological function has been extensively recognised, the usage of the ensemble of conformations in dynamic equilibrium to represent the functional state of proteins and the importance of pockets, cavities and/or tunnels was often neglected in previous studies. These functional structures and the equilibrium between them could be structurally analysed in wild type as well as in sequence variants. Our results indicate that biologically important pockets, as well as their shape and dynamics, are central to understanding protein function in wild-type, polymorphic or disease-related variations.Fil: Hasenahuer, Marcia Anahí. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barletta Roldan, Patricio German. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fornasari, Maria Silvina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Neutral networks of genotypes: Evolution behind the curtain

    Get PDF
    Our understanding of the evolutionary process has gone a long way since the publication, 150 years ago, of "On the origin of species" by Charles R. Darwin. The XXth Century witnessed great efforts to embrace replication, mutation, and selection within the framework of a formal theory, able eventually to predict the dynamics and fate of evolving populations. However, a large body of empirical evidence collected over the last decades strongly suggests that some of the assumptions of those classical models necessitate a deep revision. The viability of organisms is not dependent on a unique and optimal genotype. The discovery of huge sets of genotypes (or neutral networks) yielding the same phenotype --in the last term the same organism--, reveals that, most likely, very different functional solutions can be found, accessed and fixed in a population through a low-cost exploration of the space of genomes. The 'evolution behind the curtain' may be the answer to some of the current puzzles that evolutionary theory faces, like the fast speciation process that is observed in the fossil record after very long stasis periods.Comment: 7 pages, 7 color figures, uses a modification of pnastwo.cls called pnastwo-modified.cls (included

    Mining electron density for functionally relevant protein polysterism in crystal structures.

    Get PDF
    This review focuses on conceptual and methodological advances in our understanding and characterization of the conformational heterogeneity of proteins. Focusing on X-ray crystallography, we describe how polysterism, the interconversion of pre-existing conformational substates, has traditionally been analyzed by comparing independent crystal structures or multiple chains within a single crystal asymmetric unit. In contrast, recent studies have focused on mining electron density maps to reveal previously 'hidden' minor conformational substates. Functional tests of the importance of minor states suggest that evolutionary selection shapes the entire conformational landscape, including uniquely configured conformational substates, the relative distribution of these substates, and the speed at which the protein can interconvert between them. An increased focus on polysterism may shape the way protein structure and function is studied in the coming years
    corecore