1,110 research outputs found

    Cloud Storage and Bioinformatics in a private cloud deployment: Lessons for Data Intensive research

    No full text
    This paper describes service portability for a private cloud deployment, including a detailed case study about Cloud Storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). Our Cloud Storage design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture and user support. Experiments for data services (backup automation, data recovery and data migration) are performed and results confirm backup automation is completed swiftly and is reliable for data-intensive research. The data recovery result confirms that execution time is in proportion to quantity of recovered data, but the failure rate increases in an exponential manner. The data migration result confirms execution time is in proportion to disk volume of migrated data, but again the failure rate increases in an exponential manner. In addition, benefits of CCAF are illustrated using several bioinformatics examples such as tumour modelling, brain imaging, insulin molecules and simulations for medical training. Our Cloud Storage solution described here offers cost reduction, time-saving and user friendliness

    Cloud service discovery and analysis: a unified framework

    Get PDF
    Over the past few years, cloud computing has been more and more attractive as a new computing paradigm due to high flexibility for provisioning on-demand computing resources that are used as services through the Internet. The issues around cloud service discovery have considered by many researchers in the recent years. However, in cloud computing, with the highly dynamic, distributed, the lack of standardized description languages, diverse services offered at different levels and non-transparent nature of cloud services, this research area has gained a significant attention. Robust cloud service discovery approaches will assist the promotion and growth of cloud service customers and providers, but will also provide a meaningful contribution to the acceptance and development of cloud computing. In this dissertation, we have proposed an automated cloud service discovery approach of cloud services. We have also conducted extensive experiments to validate our proposed approach. The results demonstrate the applicability of our approach and its capability of effectively identifying and categorizing cloud services on the Internet. Firstly, we develop a novel approach to build cloud service ontology. Cloud service ontology initially is built based on the National Institute of Standards and Technology (NIST) cloud computing standard. Then, we add new concepts to ontology by automatically analyzing real cloud services based on cloud service ontology Algorithm. We also propose cloud service categorization that use Term Frequency to weigh cloud service ontology concepts and calculate cosine similarity to measure the similarity between cloud services. The cloud service categorization algorithm is able to categorize cloud services to clusters for effective categorization of cloud services. In addition, we use Machine Learning techniques to identify cloud service in real environment. Our cloud service identifier is built by utilizing cloud service features extracted from the real cloud service providers. We determine several features such as similarity function, semantic ontology, cloud service description and cloud services components, to be used effectively in identifying cloud service on the Web. Also, we build a unified model to expose the cloud service’s features to a cloud service search user to ease the process of searching and comparison among a large amount of cloud services by building cloud service’s profile. Furthermore, we particularly develop a cloud service discovery Engine that has capability to crawl the Web automatically and collect cloud services. The collected datasets include meta-data of nearly 7,500 real-world cloud services providers and nearly 15,000 services (2.45GB). The experimental results show that our approach i) is able to effectively build automatic cloud service ontology, ii) is robust in identifying cloud service in real environment and iii) is more scalable in providing more details about cloud services.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Cloud Bioinformatics in a private cloud deployment

    No full text

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version
    • …
    corecore