20,322 research outputs found

    Reachability and Termination Analysis of Concurrent Quantum Programs

    Full text link
    We introduce a Markov chain model of concurrent quantum programs. This model is a quantum generalization of Hart, Sharir and Pnueli's probabilistic concurrent programs. Some characterizations of the reachable space, uniformly repeatedly reachable space and termination of a concurrent quantum program are derived by the analysis of their mathematical structures. Based on these characterizations, algorithms for computing the reachable space and uniformly repeatedly reachable space and for deciding the termination are given.Comment: Accepted by Concur'12. Comments are welcom

    On the Termination Problem for Probabilistic Higher-Order Recursive Programs

    Get PDF
    In the last two decades, there has been much progress on model checking of both probabilistic systems and higher-order programs. In spite of the emergence of higher-order probabilistic programming languages, not much has been done to combine those two approaches. In this paper, we initiate a study on the probabilistic higher-order model checking problem, by giving some first theoretical and experimental results. As a first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS), as a model of probabilistic higher-order programs. The model of PHORS may alternatively be viewed as a higher-order extension of recursive Markov chains. We then investigate the probabilistic termination problem -- or, equivalently, the probabilistic reachability problem. We prove that almost sure termination of order-2 PHORS is undecidable. We also provide a fixpoint characterization of the termination probability of PHORS, and develop a sound (but possibly incomplete) procedure for approximately computing the termination probability. We have implemented the procedure for order-2 PHORSs, and confirmed that the procedure works well through preliminary experiments that are reported at the end of the article

    Proving termination of evaluation for System F with control operators

    Full text link
    We present new proofs of termination of evaluation in reduction semantics (i.e., a small-step operational semantics with explicit representation of evaluation contexts) for System F with control operators. We introduce a modified version of Girard's proof method based on reducibility candidates, where the reducibility predicates are defined on values and on evaluation contexts as prescribed by the reduction semantics format. We address both abortive control operators (callcc) and delimited-control operators (shift and reset) for which we introduce novel polymorphic type systems, and we consider both the call-by-value and call-by-name evaluation strategies.Comment: In Proceedings COS 2013, arXiv:1309.092

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Scheduler-specific Confidentiality for Multi-Threaded Programs and Its Logic-Based Verification

    Get PDF
    Observational determinism has been proposed in the literature as a way to ensure confidentiality for multi-threaded programs. Intuitively, a program is observationally deterministic if the behavior of the public variables is deterministic, i.e., independent of the private variables and the scheduling policy. Several formal definitions of observational determinism exist, but all of them have shortcomings; for example they accept insecure programs or they reject too many innocuous programs. Besides, the role of schedulers was ignored in all the proposed definitions. A program that is secure under one kind of scheduler might not be secure when executed with a different scheduler. The existing definitions do not ensure that an accepted program behaves securely under the scheduler that is used to deploy the program. Therefore, this paper proposes a new formalization of scheduler-specific observational determinism. It accepts programs that are secure when executed under a specific scheduler. Moreover, it is less restrictive on harmless programs under a particular scheduling policy. In addition, we discuss how compliance with our definition can be verified, using model checking. We use the idea of self-composition and we rephrase the observational determinism property for a single program CC as a temporal logic formula over the program CC executed in parallel with an independent copy of itself. Thus two states reachable during the execution of CC are combined into a reachable program state of the self-composed program. This allows to compare two program executions in a single temporal logic formula. The actual characterization is done in two steps. First we discuss how stuttering equivalence can be characterized as a temporal logic formula. Observational determinism is then expressed in terms of the stuttering equivalence characterization. This results in a conjunction of an LTL and a CTL formula, that are amenable to model checking

    Extensional and Intensional Strategies

    Full text link
    This paper is a contribution to the theoretical foundations of strategies. We first present a general definition of abstract strategies which is extensional in the sense that a strategy is defined explicitly as a set of derivations of an abstract reduction system. We then move to a more intensional definition supporting the abstract view but more operational in the sense that it describes a means for determining such a set. We characterize the class of extensional strategies that can be defined intensionally. We also give some hints towards a logical characterization of intensional strategies and propose a few challenging perspectives
    • …
    corecore