1,230 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Jefferson Digital Commons quarterly report: January-March 2020

    Get PDF
    This quarterly report includes: New Look for the Jefferson Digital Commons Articles COVID-19 Working Papers Educational Materials From the Archives Grand Rounds and Lectures JeffMD Scholarly Inquiry Abstracts Journals and Newsletters Master of Public Health Capstones Oral Histories Posters and Conference Presentations What People are Saying About the Jefferson the Digital Common

    Nuni-A case study

    Get PDF

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Blockchain leveraged decentralized IoT eHealth framework

    Get PDF
    Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data

    Blockchain: An EOM approach to reconciliation in banking

    Get PDF
    Purpose: The aim of this study is to evaluate the contribution of Blockchain technology (Cryptobanking) using the expected operating model (EOM) to address the pain points in reconciliation at middle and back-office operational levels in assessing the significance of this technology on return on investment.Design/Methodology: A structured questionnaire was designed to collect primary data using a stratified sampling method from 120 respondents working in leading Investment banks operating in the geographical locality of urban Bangalore. Demographic variables, accounting variables, data reporting variables, approach variables, and variables of EOM were considered to validate the hypothesis with the help of statistical tools, namely ANOVA, and Multiple Stepwise Regression Analysis.Findings: The results obtained confirm that there is a significant difference in reconciliation with the implementation of an innovative business process. Financial analysis is the highest predictor of ROI when integrated with technology as the adapted Blockchain innovation in reconciliation is the most influencing factor in enhancing, improving ROI playing a pivotal role in the Investment banks. Originality/Value: Blockchain Technology (Crypto banking) facilitates transforming the reconciliation process of these banks with improved operational efficiency. Blockchain and settlement platforms offer inter-organization solutions facilitating the reconciliation of various transactions in real-time through a trust-based network in the form of digital settlements with better consortiums

    Predicting Diabetes in United Arab Emirates Healthcare: Artificial Intelligence and Data Mining Case Study

    Get PDF
    Aim: The primary aim of this article is to address the scarcity of tools available to examine the relationships between different attributes in medical datasets within the healthcare industry. Specifically, the focus is on developing a predictive model for diabetes using Artificial Intelligence and Data Mining techniques in the United Arab Emirates healthcare sector.Methods: The paper follows a comprehensive approach, employing the four data mining steps: data preprocessing, data exploration, model building, and model evaluation. To build the predictive model, the decision tree algorithm is utilized. Data from 2856 patients, collected from prime hospitals in Dubai, United Arab Emirates, are analyzed and used as the basis for model development.Results: The research findings indicate that several factors significantly influence the likelihood of developing diabetes. Specifically, age, gender, and genetics emerge as critical determinants in predicting the onset of diabetes. The developed predictive model demonstrates the potential to provide accurate and easy-to-understand results regarding the likelihood of diabetes in the future.Conclusion: This study highlights the importance of Artificial Intelligence and Data Mining techniques in predicting diabetes within the United Arab Emirates healthcare sector. The findings emphasize the significance of age, gender, and genetics in diabetes prediction. This research addresses the current data scarcity and offers valuable insights for healthcare professionals. Furthermore, the study recommends further research to enhance diabetes prediction models and their application in clinical settings
    • …
    corecore