4,810 research outputs found

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    Implementation and performance analysis of a QoS-aware TFRC mechanism

    Get PDF
    This paper deals with the improvement of transport protocol behaviour over the DiffServ Assured Forwarding (AF)class. The Assured Service (AS) provides a minimum throughput guarantee that classical congestion control mechanisms, like window-based in TCP or equation-based in TCP-Friendly Rate Control (TFRC), are not able to use efficiently. In response, this paper proposes a performance analysis of a QoS aware congestion control mechanism, named gTFRC, which improves the delivery of continuous streams. The gTFRC (guaranteed TFRC) mechanism has been integrated into an Enhanced Transport Protocol (ETP) that allows protocol mechanisms to be dynamically managed and controlled. After comparing a ns-2 simulation and our implementation of the basic TFRC mechanism, we show that ETP/gTFRC extension is able to reach a minimum throughput guarantee whatever the flow’s RTT and target rate (TR) and the network provisioning conditions

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Towards an SDN network control application for differentiated traffic routing

    Get PDF
    In the last years, Software Defined Networking has emerged as a promising paradigm to foster network innovation and address the issues coming from the ossification of the TCP/IP architecture. The clean separation between control and data plane, the definition of northbound and southbound interfaces are key features of the Software Defined Networking paradigm. Moreover, a centralised control plane allows network operators to deploy advanced control and management strategies. Effective traffic engineering and resources management policies allow to achieve a better utilisation of network resources and improve endto- end service performance. This paper deals with the architectural design and experimental validation of a control application that enables differentiated routing for traffic flows belonging to different service classes. The new control application makes routing decisions leveraging on OpenFlow network statistics, i.e., taking advantage of real-time network status information. Moreover, a Deep Packet Inspection module has been developed and integrated in the control application to detect VoIP traffic with Session Initiation Protocol signalling, enforcing this way policies for a differentiated treatment of VoIP traffic. Finally, a functional validation is performed in emulated environment.This work was supported by the EPSRC INTERNET Project EP/H040536/1.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ICC.2015.724925

    TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?

    Get PDF
    Since the proposition of Quality of Service architectures by the IETF, the interaction between TCP and the QoS services has been intensively studied. This paper proposes to look forward to the results obtained in terms of TCP throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service and to present an overview of the different proposals to solve the problem. It has been demonstrated that the standardized IETF DiffServ conditioners such as the token bucket color marker and the time sliding window color maker were not good TCP traffic descriptors. Starting with this point, several propositions have been made and most of them presents new marking schemes in order to replace or improve the traditional token bucket color marker. The main problem is that TCP congestion control is not designed to work with the AF service. Indeed, both mechanisms are antagonists. TCP has the property to share in a fair manner the bottleneck bandwidth between flows while DiffServ network provides a level of service controllable and predictable. In this paper, we build a classification of all the propositions made during these last years and compare them. As a result, we will see that these conditioning schemes can be separated in three sets of action level and that the conditioning at the network edge level is the most accepted one. We conclude that the problem is still unsolved and that TCP, conditioned or not conditioned, remains inappropriate to the DiffServ/AF service
    • 

    corecore