1,580 research outputs found

    Shared Control Based on Extended Lipschitz Analysis With Application to Human-Superlimb Collaboration

    Full text link
    This paper presents a quantitative method to construct voluntary manual control and sensor-based reactive control in human-robot collaboration based on Lipschitz conditions. To collaborate with a human, the robot observes the human's motions and predicts a desired action. This predictor is constructed from data of human demonstrations observed through the robot's sensors. Analysis of demonstration data based on Lipschitz quotients evaluates a) whether the desired action is predictable and b) to what extent the action is predictable. If the quotients are low for all the input-output pairs of demonstration data, a predictor can be constructed with a smooth function. In dealing with human demonstration data, however, the Lipschitz quotients tend to be very high in some situations due to the discrepancy between the information that humans use and the one robots can obtain. This paper a) presents a method for seeking missing information or a new variable that can lower the Lipschitz quotients by adding the new variable to the input space, and b) constructs a human-robot shared control system based on the Lipschitz analysis. Those predictable situations are assigned to the robot's reactive control, while human voluntary control is assigned to those situations where the Lipschitz quotients are high even after the new variable is added. The latter situations are deemed unpredictable and are rendered to the human. This human-robot shared control method is applied to assist hemiplegic patients in a bimanual eating task with a Supernumerary Robotic Limb, which works in concert with an unaffected functional hand

    The e-Bike Motor Assembly: Towards Advanced Robotic Manipulation for Flexible Manufacturing

    Full text link
    Robotic manipulation is currently undergoing a profound paradigm shift due to the increasing needs for flexible manufacturing systems, and at the same time, because of the advances in enabling technologies such as sensing, learning, optimization, and hardware. This demands for robots that can observe and reason about their workspace, and that are skillfull enough to complete various assembly processes in weakly-structured settings. Moreover, it remains a great challenge to enable operators for teaching robots on-site, while managing the inherent complexity of perception, control, motion planning and reaction to unexpected situations. Motivated by real-world industrial applications, this paper demonstrates the potential of such a paradigm shift in robotics on the industrial case of an e-Bike motor assembly. The paper presents a concept for teaching and programming adaptive robots on-site and demonstrates their potential for the named applications. The framework includes: (i) a method to teach perception systems onsite in a self-supervised manner, (ii) a general representation of object-centric motion skills and force-sensitive assembly skills, both learned from demonstration, (iii) a sequencing approach that exploits a human-designed plan to perform complex tasks, and (iv) a system solution for adapting and optimizing skills online. The aforementioned components are interfaced through a four-layer software architecture that makes our framework a tangible industrial technology. To demonstrate the generality of the proposed framework, we provide, in addition to the motivating e-Bike motor assembly, a further case study on dense box packing for logistics automation

    A method for identifying ancient introgression between caballine and non-caballine equids using whole genome high throughput data.

    Get PDF
    Introgression is one of the main mechanisms that transfer adapted alleles between species. The advantageous variants will get positively selected and retained in the recipient population while rest of the variants undergo negative selection. When analyzing horse genome, two alleles were found in CXCL16 gene, one associated with susceptibility and one with resistance to developing persistent shedding of the Equine Arteritis Virus. The two alleles differ by 4 non-synonymous variants in exon 1 of the gene. Comparison with 3 non-caballine equids (zebras, asses and hemiones) revealed that one haplotype was almost identical to the haplotype found in non-caballines while the other had differences characteristic of 4.5 million years since a common ancestor. Based on this observation, we project that an ancient introgression event occurred between caballine and non-caballine equids. If so, we should be able to find more instances of introgression between these species. We developed a method to identify putatively introgressed segments in the horse genome. It is estimated that non-caballine equids such as zebras and asses diverged from horses between 4 and 4.5 MYA. Genomic analysis of these animals vs. equine reference genome reveals the divergence at both the nucleotide and chromosomal level. Whole genome data for the non-caballine equids when mapped to the caballine (Equus caballus) reference genome show a greater frequency of single nucleotide differences than horses have relative to the same reference. We have created a Likelihood Estimate framework that uses this difference in single nucleotide frequencies to predict whether a haplotype evolved along the caballine or non-caballine lineage. Our results demonstrated that these haplotypes are between 0.5 and 2kb in length and are detectable at a rate of several hundred loci per horse. About 1.1% of the equine genome was introgressed and 64% of the identified putative regions were associated with either structural elements, regulatory regions, or both. These regions were responsible for gene products involved in regulation of response to stimuli, signal transduction, integral components of cell membrane and important metabolism pathways such as purine metabolism and thiamine metabolism. Furthermore, these haplotypes occur at high frequency in the horse population suggesting that they are positively selected by evolution

    Implementation of a neural network-based electromyographic control system for a printed robotic hand

    Get PDF
    3D printing has revolutionized the manufacturing process reducing costs and time, but only when combined with robotics and electronics, this structures could develop their full potential. In order to improve the available printable hand designs, a control system based on electromyographic (EMG) signals has been implemented, so that different movement patterns can be recognized and replicated in the bionic hand in real time. This control system has been developed in Matlab/ Simulink comprising EMG signal acquisition, feature extraction, dimensionality reduction and pattern recognition through a trained neural-network. Pattern recognition depends on the features used, their dimensions and the time spent in signal processing. Finding balance between this execution time and the input features of the neural network is a crucial step for an optimal classification.Ingeniería Biomédic

    Evaluating Human Performance for Image-Guided Surgical Tasks

    Get PDF
    The following work focuses on the objective evaluation of human performance for two different interventional tasks; targeted prostate biopsy tasks using a tracked biopsy device, and external ventricular drain placement tasks using a mobile-based augmented reality device for visualization and guidance. In both tasks, a human performance methodology was utilized which respects the trade-off between speed and accuracy for users conducting a series of targeting tasks using each device. This work outlines the development and application of performance evaluation methods using these devices, as well as details regarding the implementation of the mobile AR application. It was determined that the Fitts’ Law methodology can be applied for evaluation of tasks performed in each surgical scenario, and was sensitive to differentiate performance across a range which spanned experienced and novice users. This methodology is valuable for future development of training modules for these and other medical devices, and can provide details about the underlying characteristics of the devices, and how they can be optimized with respect to human performance

    Skill-based human-robot cooperation in tele-operated path tracking

    Get PDF
    This work proposes a shared-control tele-operation framework that adapts its cooperative properties to the estimated skill level of the operator. It is hypothesized that different aspects of an operatorâ\u80\u99s performance in executing a tele-operated path tracking task can be assessed through conventional machine learning methods using motion-based and task-related features. To identify performance measures that capture motor skills linked to the studied task, an experiment is conducted where users new to tele-operation, practice towards motor skill proficiency in 7 training sessions. A set of classifiers are then learned from the acquired data and selected features, which can generate a skill profile that comprises estimations of userâ\u80\u99s various competences. Skill profiles are exploited to modify the behavior of the assistive robotic system accordingly with the objective of enhancing user experience by preventing unnecessary restriction for skilled users. A second experiment is implemented in which novice and expert users execute the path tracking on different pathways while being assisted by the robot according to their estimated skill profiles. Results validate the skill estimation method and hint at feasibility of shared-control customization in tele-operated path tracking

    Technological roadmap on AI planning and scheduling

    Get PDF
    At the beginning of the new century, Information Technologies had become basic and indispensable constituents of the production and preparation processes for all kinds of goods and services and with that are largely influencing both the working and private life of nearly every citizen. This development will continue and even further grow with the continually increasing use of the Internet in production, business, science, education, and everyday societal and private undertaking. Recent years have shown, however, that a dramatic enhancement of software capabilities is required, when aiming to continuously provide advanced and competitive products and services in all these fast developing sectors. It includes the development of intelligent systems – systems that are more autonomous, flexible, and robust than today’s conventional software. Intelligent Planning and Scheduling is a key enabling technology for intelligent systems. It has been developed and matured over the last three decades and has successfully been employed for a variety of applications in commerce, industry, education, medicine, public transport, defense, and government. This document reviews the state-of-the-art in key application and technical areas of Intelligent Planning and Scheduling. It identifies the most important research, development, and technology transfer efforts required in the coming 3 to 10 years and shows the way forward to meet these challenges in the short-, medium- and longer-term future. The roadmap has been developed under the regime of PLANET – the European Network of Excellence in AI Planning. This network, established by the European Commission in 1998, is the co-ordinating framework for research, development, and technology transfer in the field of Intelligent Planning and Scheduling in Europe. A large number of people have contributed to this document including the members of PLANET non- European international experts, and a number of independent expert peer reviewers. All of them are acknowledged in a separate section of this document. Intelligent Planning and Scheduling is a far-reaching technology. Accepting the challenges and progressing along the directions pointed out in this roadmap will enable a new generation of intelligent application systems in a wide variety of industrial, commercial, public, and private sectors

    Computational Modeling Approaches For Task Analysis In Robotic-Assisted Surgery

    Get PDF
    Surgery is continuously subject to technological innovations including the introduction of robotic surgical devices. The ultimate goal is to program the surgical robot to perform certain difficult or complex surgical tasks in an autonomous manner. The feasibility of current robotic surgery systems to record quantitative motion and video data motivates developing descriptive mathematical models to recognize, classify and analyze surgical tasks. Recent advances in machine learning research for uncovering concealed patterns in huge data sets, like kinematic and video data, offer a possibility to better understand surgical procedures from a system point of view. This dissertation focuses on bridging the gap between these two lines of the research by developing computational models for task analysis in robotic-assisted surgery. The key step for advance study in robotic-assisted surgery and autonomous skill assessment is to develop techniques that are capable of recognizing fundamental surgical tasks intelligently. Surgical tasks and at a more granular level, surgical gestures, need to be quantified to make them amenable for further study. To answer to this query, we introduce a new framework, namely DTW-kNN, to recognize and classify three important surgical tasks including suturing, needle passing and knot tying based on kinematic data captured using da Vinci robotic surgery system. Our proposed method needs minimum preprocessing that results in simple, straightforward and accurate framework which can be applied for any autonomous control system. We also propose an unsupervised gesture segmentation and recognition (UGSR) method which has the ability to automatically segment and recognize temporal sequence of gestures in RMIS task. We also extent our model by applying soft boundary segmentation (Soft-UGSR) to address some of the challenges that exist in the surgical motion segmentation. The proposed algorithm can effectively model gradual transitions between surgical activities. Additionally, surgical training is undergoing a paradigm shift with more emphasis on the development of technical skills earlier in training. Thus metrics for the skills, especially objective metrics, become crucial. One field of surgery where such techniques can be developed is robotic surgery, as here all movements are already digitalized and therefore easily susceptible to analysis. Robotic surgery requires surgeons to perform a much longer and difficult training process which create numerous new challenges for surgical training. Hence, a new method of surgical skill assessment is required to ensure that surgeons have adequate skill level to be allowed to operate freely on patients. Among many possible approaches, those that provide noninvasive monitoring of expert surgeon and have the ability to automatically evaluate surgeon\u27s skill are of increased interest. Therefore, in this dissertation we develop a predictive framework for surgical skill assessment to automatically evaluate performance of surgeon in RMIS. Our classification framework is based on the Global Movement Features (GMFs) which extracted from kinematic movement data. The proposed method addresses some of the limitations in previous work and gives more insight about underlying patterns of surgical skill levels

    A MULTI-FUNCTIONAL PROVENANCE ARCHITECTURE: CHALLENGES AND SOLUTIONS

    Get PDF
    In service-oriented environments, services are put together in the form of a workflow with the aim of distributed problem solving. Capturing the execution details of the services' transformations is a significant advantage of using workflows. These execution details, referred to as provenance information, are usually traced automatically and stored in provenance stores. Provenance data contains the data recorded by a workflow engine during a workflow execution. It identifies what data is passed between services, which services are involved, and how results are eventually generated for particular sets of input values. Provenance information is of great importance and has found its way through areas in computer science such as: Bioinformatics, database, social, sensor networks, etc. Current exploitation and application of provenance data is very limited as provenance systems started being developed for specific applications. Thus, applying learning and knowledge discovery methods to provenance data can provide rich and useful information on workflows and services. Therefore, in this work, the challenges with workflows and services are studied to discover the possibilities and benefits of providing solutions by using provenance data. A multifunctional architecture is presented which addresses the workflow and service issues by exploiting provenance data. These challenges include workflow composition, abstract workflow selection, refinement, evaluation, and graph model extraction. The specific contribution of the proposed architecture is its novelty in providing a basis for taking advantage of the previous execution details of services and workflows along with artificial intelligence and knowledge management techniques to resolve the major challenges regarding workflows. The presented architecture is application-independent and could be deployed in any area. The requirements for such an architecture along with its building components are discussed. Furthermore, the responsibility of the components, related works and the implementation details of the architecture along with each component are presented
    corecore