33,992 research outputs found

    Android Permissions Remystified: A Field Study on Contextual Integrity

    Full text link
    Due to the amount of data that smartphone applications can potentially access, platforms enforce permission systems that allow users to regulate how applications access protected resources. If users are asked to make security decisions too frequently and in benign situations, they may become habituated and approve all future requests without regard for the consequences. If they are asked to make too few security decisions, they may become concerned that the platform is revealing too much sensitive information. To explore this tradeoff, we instrumented the Android platform to collect data regarding how often and under what circumstances smartphone applications are accessing protected resources regulated by permissions. We performed a 36-person field study to explore the notion of "contextual integrity," that is, how often are applications accessing protected resources when users are not expecting it? Based on our collection of 27 million data points and exit interviews with participants, we examine the situations in which users would like the ability to deny applications access to protected resources. We found out that at least 80% of our participants would have preferred to prevent at least one permission request, and overall, they thought that over a third of requests were invasive and desired a mechanism to block them

    Understanding Chat Messages for Sticker Recommendation in Messaging Apps

    Full text link
    Stickers are popularly used in messaging apps such as Hike to visually express a nuanced range of thoughts and utterances to convey exaggerated emotions. However, discovering the right sticker from a large and ever expanding pool of stickers while chatting can be cumbersome. In this paper, we describe a system for recommending stickers in real time as the user is typing based on the context of the conversation. We decompose the sticker recommendation (SR) problem into two steps. First, we predict the message that the user is likely to send in the chat. Second, we substitute the predicted message with an appropriate sticker. Majority of Hike's messages are in the form of text which is transliterated from users' native language to the Roman script. This leads to numerous orthographic variations of the same message and makes accurate message prediction challenging. To address this issue, we learn dense representations of chat messages employing character level convolution network in an unsupervised manner. We use them to cluster the messages that have the same meaning. In the subsequent steps, we predict the message cluster instead of the message. Our approach does not depend on human labelled data (except for validation), leading to fully automatic updation and tuning pipeline for the underlying models. We also propose a novel hybrid message prediction model, which can run with low latency on low-end phones that have severe computational limitations. Our described system has been deployed for more than 66 months and is being used by millions of users along with hundreds of thousands of expressive stickers

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    A context-aware framework for CSCW applications in enterprise environments

    Get PDF
    Future pervasive environments will take into consideration physical and digital social relationships. Nowadays it is important to use collective intelligence, where the interpretation of context information can be harnessed as input for context-aware applications, especially for group collaboration. For collaborative applications this represents opportunities, but also new challenges in terms of using collective information for adaptability and personalization in pervasive environments. This paper presents the challenges in design and development of a context-aware framework CSCW supporting pro-behaviour capabilities in pervasive communities

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper
    • …
    corecore