7 research outputs found

    Towards unlocking the full potential of Multileaf Collimators

    Get PDF
    International audienceA central problem in the delivery of intensity-modulated radiation therapy (IMRT) using a multileaf collimator (MLC) relies on fi nding a series of leaves confi gurations that can be shaped with the MLC to properly deliver a given treatment. In this paper, we analyse, from an algorithmic point of view, the power of using dual-layer MLCs and Rotating Collimators for this purpose

    Exploring Potential Therapeutic Benefits of Spatially Fractionated Radiation Therapy

    Get PDF
    The work presented in this dissertation focuses on investigating new and safe ways to use radiation for enhancing cancer treatment via preclinical studies of Spatially Fractionated Radiation Therapy (SFRT). SFRT is a very promising, yet poorly understood, cancer radiotherapy approach that has recently gained traction due to its remarkable tissue selectivity, eradicating tumors effectively with little treatment toxicity, as well as its easy implementation on a wide range of clinical radiotherapy machines. Decades of clinical and preclinical research have demonstrated that SFRT may be used as a safe and effective way to shrink very large, bulky tumors in patients for whom other modern treatment approaches have been ineffective. Despite its very high therapeutic ratio and potential to satisfy several unmet needs in cancer treatment, SFRT remains largely an experimental approach, and a lack of preclinical SFRT research leaves many important questions unanswered. This body of work investigates the development of a novel SFRT-delivery system and its implementation in a variety of preclinical SFRT research scenarios in the hopes of shedding light on some of the unanswered questions that hinder clinical translation of this promising treatment technology. In this work, systemic studies investigate key unique SFRT dosimetric parameters and their correlations with treatment response, as well as SFRT’s specific advantages over conventional radiotherapy, particularly those enhancing multi-modality cancer therapy approaches such as anti-cancer immunotherapy and nanoparticle chemotherapy drug-delivery to tumors. SFRT is a low-toxicity and low-cost radiation therapy treatment that offers hope for many cancer patients, especially those failed by current cancer treatment technologies. The work presented here aims to improve the understanding of this treatment approach and contribute to the effective and accessible treatment of cancer.Doctor of Philosoph

    2023 Summer Experience Program Abstracts

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1130/thumbnail.jp

    Development and evaluation of low-dose rate radioactive gold nanoparticles for application in nanobrachytherapy

    Get PDF
    Depuis les dix dernières années, l’innovation des traitements d’oncologie a fait une utilisation croissante de la nanotechnologie. De nouveaux traitements à base de nanoparticules (NPs) sont notamment rendus au stade de l’essai clinique. Possédant des caractéristiques physico-chimiques particulières, les NPs peuvent être utilisées afin de bonifier l’effet thérapeutique des traitements actuels. Par exemple, l’amélioration de la curiethérapie (c.-à-d. radiothérapie interne) nécessite le développement de nouvelles procédures permettant de diminuer la taille des implants, et ce, tout en augmentant l’homogénéité de la dose déposée dans les tumeurs. Des études théoriques et expérimentales ont démontré que l’injection de NPs d’or à proximité des implants traditionnels de curiethérapie de faible débit de dose (par ex. 125I, 103Pd) permettrait d’augmenter significativement leur efficacité thérapeutique. L'interaction entre l’or et les photons émis par les implants de curiethérapie (c.-à-d. l’effet de radiosensibilisation) génère des rayonnements divers (photoélectrons, électrons Auger, rayons X caractéristiques) qui augmentent significativement la dose administrée. Dans le cadre de cette thèse, l’approche proposée était de développer des NPs d’or radioactives comme nouveau traitement de curiethérapie contre le cancer de la prostate. L’aspect novateur et unique était de synthétiser une particule coeurcoquille (Pd@Au) en utilisant l’isotope actuellement employé en curiethérapie de la prostate: le palladium-103 (103Pd, 20 keV). Dans ce cas-ci, la présence d’atomes d’or permet de produire l’effet de radiosensibilisation et d’augmenter la dose déposée. La preuve de concept a été démontrée par la synthèse et la caractérisation des NPs 103Pd@Au-PEG NPs. Ensuite, une étude longitudinale in vivo impliquant l’injection des NPs dans un modèle xénogreffe de tumeurs de la prostate chez la souris a été effectuée. L’efficacité thérapeutique induite par les NPs a été démontrée par le retard de la croissance tumorale des souris injectées par rapport aux souris non injectées (contrôles). Enfin, une étude de cartographie de la dose générée par les NPs à l’échelle cellulaire et tumorale a permis de comprendre davantage les mécanismes thérapeutiques liés aux NPs radioactives. En résumé, l’ensemble des travaux présentés dans cette thèse font office de précurseurs relativement au domaine de la nanocuriethérapie, et pourraient ouvrir la voie à une nouvelle génération de NPs pour la radiothérapie.The last decade saw the emergence of new innovative oncology treatments based on nanotechnology. New treatments using nanoparticles (NPs) are now translated to clinical trials. NPs possess unique physical and chemical properties that can be advantageously used to improve the therapeutic effect of current treatments. For instance, therapeutic efficiency enhancement related to internal radiotherapy (i.e., brachytherapy), requires the development of new procedures leading to a decrease of the implant size, while increasing the dose homogeneity and distribution in tumors. Several theoretical and experimental studies based on low-dose brachytherapy seeds (e.g., 125I and 103Pd) combined with gold nanoparticles (Au NPs) showed very promising results in terms of dose enhancement. Gold is a radiosensitizer that enhances the efficiency of radiotherapy by increasing the energy deposition in the surrounding tissues. Dose enhancement is caused by the photoelectric products (photoelectrons, Auger electrons, characteristic X-rays) that are generated after the irradiation of Au NPs. In this thesis, the proposed approach was to develop radioactive Au NPs as a new brachytherapy treatment for prostate cancer. The unique and innovative aspect of this strategy was to synthesize core-shell NPs based on the radioisotope palladium-103 (103Pd, 20 keV), which is currently used in low-dose rate prostate cancer brachytherapy. In this concept, the administrated dose is increased via the radiosensitization effect that is generated through the interactions of low-energy photons with the gold atoms. The proof-ofconcept of this approach was first demonstrated by the synthesis and characterization of the core-shell NPs (103Pd@Au-PEG NPs). Then, a longitudinal in vivo study following the injection of NPs in a prostate cancer xenograft murine model was performed. The therapeutic efficiency was confirmed by the tumor growth delay of the treated group as compared to the control group (untreated). Finally, a mapping study of the dose distribution generated by the NPs at the cellular and tumor levels provided new insights about the therapeutic mechanisms related to radioactive NPs. In summary, the studies presented in this thesis are precursors works in the field of nanobrachytherapy, and could pave the way for a new generation of NPs for radiotherapy

    Towards unlocking the full potential of Multileaf Collimators

    No full text
    International audienceA central problem in the delivery of intensity-modulated radiation therapy (IMRT) using a multileaf collimator (MLC) relies on fi nding a series of leaves confi gurations that can be shaped with the MLC to properly deliver a given treatment. In this paper, we analyse, from an algorithmic point of view, the power of using dual-layer MLCs and Rotating Collimators for this purpose

    Towards unlocking the full potential of Multileaf Collimators

    No full text
    International audienceA central problem in the delivery of intensity-modulated radiation therapy (IMRT) using a multileaf collimator (MLC) relies on fi nding a series of leaves confi gurations that can be shaped with the MLC to properly deliver a given treatment. In this paper, we analyse, from an algorithmic point of view, the power of using dual-layer MLCs and Rotating Collimators for this purpose
    corecore