1,179 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Machine Learning for Enhanced Maritime Situation Awareness: Leveraging Historical AIS Data for Ship Trajectory Prediction

    Get PDF
    In this thesis, methods to support high level situation awareness in ship navigators through appropriate automation are investigated. Situation awareness relates to the perception of the environment (level 1), comprehension of the situation (level 2), and projection of future dynamics (level 3). Ship navigators likely conduct mental simulations of future ship traffic (level 3 projections), that facilitate proactive collision avoidance actions. Such actions may include minor speed and/or heading alterations that can prevent future close-encounter situations from arising, enhancing the overall safety of maritime operations. Currently, there is limited automation support for level 3 projections, where the most common approaches utilize linear predictions based on constant speed and course values. Such approaches, however, are not capable of predicting more complex ship behavior. Ship navigators likely facilitate such predictions by developing models for level 3 situation awareness through experience. It is, therefore, suggested in this thesis to develop methods that emulate the development of high level human situation awareness. This is facilitated by leveraging machine learning, where navigational experience is artificially represented by historical AIS data. First, methods are developed to emulate human situation awareness by developing categorization functions. In this manner, historical ship behavior is categorized to reflect distinct patterns. To facilitate this, machine learning is leveraged to generate meaningful representations of historical AIS trajectories, and discover clusters of specific behavior. Second, methods are developed to facilitate pattern matching of an observed trajectory segment to clusters of historical ship behavior. Finally, the research in this thesis presents methods to predict future ship behavior with respect to a given cluster. Such predictions are, furthermore, on a scale intended to support proactive collision avoidance actions. Two main approaches are used to facilitate these functions. The first utilizes eigendecomposition-based approaches via locally extracted AIS trajectory segments. Anomaly detection is also facilitated via this approach in support of the outlined functions. The second utilizes deep learning-based approaches applied to regionally extracted trajectories. Both approaches are found to be successful in discovering clusters of specific ship behavior in relevant data sets, classifying a trajectory segment to a given cluster or clusters, as well as predicting the future behavior. Furthermore, the local ship behavior techniques can be trained to facilitate live predictions. The deep learning-based techniques, however, require significantly more training time. These models will, therefore, need to be pre-trained. Once trained, however, the deep learning models will facilitate almost instantaneous predictions

    Network Intrusion Detection System:A systematic study of Machine Learning and Deep Learning approaches

    Get PDF
    The rapid advances in the internet and communication fields have resulted in ahuge increase in the network size and the corresponding data. As a result, manynovel attacks are being generated and have posed challenges for network secu-rity to accurately detect intrusions. Furthermore, the presence of the intruderswiththeaimtolaunchvariousattackswithinthenetworkcannotbeignored.Anintrusion detection system (IDS) is one such tool that prevents the network frompossible intrusions by inspecting the network traffic, to ensure its confidential-ity, integrity, and availability. Despite enormous efforts by the researchers, IDSstillfaceschallengesinimprovingdetectionaccuracywhilereducingfalsealarmrates and in detecting novel intrusions. Recently, machine learning (ML) anddeep learning (DL)-based IDS systems are being deployed as potential solutionsto detect intrusions across the network in an efficient manner. This article firstclarifiestheconceptofIDSandthenprovidesthetaxonomybasedonthenotableML and DL techniques adopted in designing network-based IDS (NIDS) sys-tems. A comprehensive review of the recent NIDS-based articles is provided bydiscussing the strengths and limitations of the proposed solutions. Then, recenttrends and advancements of ML and DL-based NIDS are provided in terms ofthe proposed methodology, evaluation metrics, and dataset selection. Using theshortcomings of the proposed methods, we highlighted various research chal-lenges and provided the future scope for the research in improving ML andDL-based NIDS

    Comparative Evaluation of VAEs, VAE-GANs and AAEs for Anomaly Detection in Network Intrusion Data

    Get PDF
    With cyberattacks growing in frequency and sophistication, effective anomaly detection is critical for securing networks and systems. This study provides a comparative evaluation of deep generative models for detecting anomalies in network intrusion data. The key objective is to determine the most accurate model architecture. Variational autoencoders (VAEs), VAE-GANs, and adversarial autoencoders (AAEs) are tested on the NSL-KDD dataset containing normal traffic and different attack types. Results show that AAEs significantly outperform VAEs and VAE-GANs, achieving AUC scores up to 0.96 and F1 scores of 0.76 on novel attacks. The adversarial regularization of AAEs enables superior generalization capabilities compared to standard VAEs. VAE-GANs exhibit better accuracy than VAEs, demonstrating the benefits of adversarial training. However, VAE-GANs have higher computational requirements. The findings provide strong evidence that AAEs are the most effective deep anomaly detection technique for intrusion detection systems. This study delivers novel insights into optimizing deep learning architectures for cyber defense. The comparative evaluation methodology and results will aid researchers and practitioners in selecting appropriate models for operational network security

    FL4IoT: IoT Device Fingerprinting and Identification Using Federated Learning

    Get PDF
    Unidentified devices in a network can result in devastating consequences. It is, therefore, necessary to fingerprint and identify IoT devices connected to private or critical networks. With the proliferation of massive but heterogeneous IoT devices, it is getting challenging to detect vulnerable devices connected to networks. Current machine learning-based techniques for fingerprinting and identifying devices necessitate a significant amount of data gathered from IoT networks that must be transmitted to a central cloud. Nevertheless, private IoT data cannot be shared with the central cloud in numerous sensitive scenarios. Federated learning (FL) has been regarded as a promising paradigm for decentralized learning and has been applied in many different use cases. It enables machine learning models to be trained in a privacy-preserving way. In this article, we propose a privacy-preserved IoT device fingerprinting and identification mechanisms using FL; we call it FL4IoT. FL4IoT is a two-phased system combining unsupervised-learning-based device fingerprinting and supervised-learning-based device identification. FL4IoT shows its practicality in different performance metrics in a federated and centralized setup. For instance, in the best cases, empirical results show that FL4IoT achieves ∼99% accuracy and F1-Score in identifying IoT devices using a federated setup without exposing any private data to a centralized cloud entity. In addition, FL4IoT can detect spoofed devices with over 99% accuracy
    • …
    corecore