177,103 research outputs found

    Towards Universal Representation Learning for Deep Face Recognition

    Full text link
    Recognizing wild faces is extremely hard as they appear with all kinds of variations. Traditional methods either train with specifically annotated variation data from target domains, or by introducing unlabeled target variation data to adapt from the training data. Instead, we propose a universal representation learning framework that can deal with larger variation unseen in the given training data without leveraging target domain knowledge. We firstly synthesize training data alongside some semantically meaningful variations, such as low resolution, occlusion and head pose. However, directly feeding the augmented data for training will not converge well as the newly introduced samples are mostly hard examples. We propose to split the feature embedding into multiple sub-embeddings, and associate different confidence values for each sub-embedding to smooth the training procedure. The sub-embeddings are further decorrelated by regularizing variation classification loss and variation adversarial loss on different partitions of them. Experiments show that our method achieves top performance on general face recognition datasets such as LFW and MegaFace, while significantly better on extreme benchmarks such as TinyFace and IJB-S.Comment: to appear in CVPR 202

    A Deep Neural Model Of Emotion Appraisal

    Full text link
    Emotional concepts play a huge role in our daily life since they take part into many cognitive processes: from the perception of the environment around us to different learning processes and natural communication. Social robots need to communicate with humans, which increased also the popularity of affective embodied models that adopt different emotional concepts in many everyday tasks. However, there is still a gap between the development of these solutions and the integration and development of a complex emotion appraisal system, which is much necessary for true social robots. In this paper, we propose a deep neural model which is designed in the light of different aspects of developmental learning of emotional concepts to provide an integrated solution for internal and external emotion appraisal. We evaluate the performance of the proposed model with different challenging corpora and compare it with state-of-the-art models for external emotion appraisal. To extend the evaluation of the proposed model, we designed and collected a novel dataset based on a Human-Robot Interaction (HRI) scenario. We deployed the model in an iCub robot and evaluated the capability of the robot to learn and describe the affective behavior of different persons based on observation. The performed experiments demonstrate that the proposed model is competitive with the state of the art in describing emotion behavior in general. In addition, it is able to generate internal emotional concepts that evolve through time: it continuously forms and updates the formed emotional concepts, which is a step towards creating an emotional appraisal model grounded in the robot experiences

    Adversarial Examples: Attacks and Defenses for Deep Learning

    Full text link
    With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial examples are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples and explore the challenges and the potential solutions.Comment: Github: https://github.com/chbrian/awesome-adversarial-examples-d

    Towards Learning a Universal Non-Semantic Representation of Speech

    Full text link
    The ultimate goal of transfer learning is to reduce labeled data requirements by exploiting a pre-existing embedding model trained for different datasets or tasks. The visual and language communities have established benchmarks to compare embeddings, but the speech community has yet to do so. This paper proposes a benchmark for comparing speech representations on non-semantic tasks, and proposes a representation based on an unsupervised triplet-loss objective. The proposed representation outperforms other representations on the benchmark, and even exceeds state-of-the-art performance on a number of transfer learning tasks. The embedding is trained on a publicly available dataset, and it is tested on a variety of low-resource downstream tasks, including personalization tasks and medical domain. The benchmark, models, and evaluation code are publicly released

    The Foundations of Deep Learning with a Path Towards General Intelligence

    Full text link
    Like any field of empirical science, AI may be approached axiomatically. We formulate requirements for a general-purpose, human-level AI system in terms of postulates. We review the methodology of deep learning, examining the explicit and tacit assumptions in deep learning research. Deep Learning methodology seeks to overcome limitations in traditional machine learning research as it combines facets of model richness, generality, and practical applicability. The methodology so far has produced outstanding results due to a productive synergy of function approximation, under plausible assumptions of irreducibility and the efficiency of back-propagation family of algorithms. We examine these winning traits of deep learning, and also observe the various known failure modes of deep learning. We conclude by giving recommendations on how to extend deep learning methodology to cover the postulates of general-purpose AI including modularity, and cognitive architecture. We also relate deep learning to advances in theoretical neuroscience research.Comment: Submitted to AGI 201

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    Auditing ImageNet: Towards a Model-driven Framework for Annotating Demographic Attributes of Large-Scale Image Datasets

    Full text link
    The ImageNet dataset ushered in a flood of academic and industry interest in deep learning for computer vision applications. Despite its significant impact, there has not been a comprehensive investigation into the demographic attributes of images contained within the dataset. Such a study could lead to new insights on inherent biases within ImageNet, particularly important given it is frequently used to pretrain models for a wide variety of computer vision tasks. In this work, we introduce a model-driven framework for the automatic annotation of apparent age and gender attributes in large-scale image datasets. Using this framework, we conduct the first demographic audit of the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) subset of ImageNet and the "person" hierarchical category of ImageNet. We find that 41.62% of faces in ILSVRC appear as female, 1.71% appear as individuals above the age of 60, and males aged 15 to 29 account for the largest subgroup with 27.11%. We note that the presented model-driven framework is not fair for all intersectional groups, so annotation are subject to bias. We present this work as the starting point for future development of unbiased annotation models and for the study of downstream effects of imbalances in the demographics of ImageNet. Code and annotations are available at: http://bit.ly/ImageNetDemoAuditComment: To appear in the Workshop on Fairness Accountability Transparency and Ethics in Computer Vision (FATE CV) at CVPR 201

    Attacks on State-of-the-Art Face Recognition using Attentional Adversarial Attack Generative Network

    Full text link
    With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. So, it is important to study how face recognition networks are subject to attacks. In this paper, we focus on a novel way to do attacks against face recognition network that misleads the network to identify someone as the target person not misclassify inconspicuously. Simultaneously, for this purpose, we introduce a specific attentional adversarial attack generative network to generate fake face images. For capturing the semantic information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces face recognition networks as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person

    Automatic Recognition of Student Engagement using Deep Learning and Facial Expression

    Full text link
    Engagement is a key indicator of the quality of learning experience, and one that plays a major role in developing intelligent educational interfaces. Any such interface requires the ability to recognise the level of engagement in order to respond appropriately; however, there is very little existing data to learn from, and new data is expensive and difficult to acquire. This paper presents a deep learning model to improve engagement recognition from images that overcomes the data sparsity challenge by pre-training on readily available basic facial expression data, before training on specialised engagement data. In the first of two steps, a facial expression recognition model is trained to provide a rich face representation using deep learning. In the second step, we use the model's weights to initialize our deep learning based model to recognize engagement; we term this the engagement model. We train the model on our new engagement recognition dataset with 4627 engaged and disengaged samples. We find that the engagement model outperforms effective deep learning architectures that we apply for the first time to engagement recognition, as well as approaches using histogram of oriented gradients and support vector machines

    Graphonomy: Universal Human Parsing via Graph Transfer Learning

    Full text link
    Prior highly-tuned human parsing models tend to fit towards each dataset in a specific domain or with discrepant label granularity, and can hardly be adapted to other human parsing tasks without extensive re-training. In this paper, we aim to learn a single universal human parsing model that can tackle all kinds of human parsing needs by unifying label annotations from different domains or at various levels of granularity. This poses many fundamental learning challenges, e.g. discovering underlying semantic structures among different label granularity, performing proper transfer learning across different image domains, and identifying and utilizing label redundancies across related tasks. To address these challenges, we propose a new universal human parsing agent, named "Graphonomy", which incorporates hierarchical graph transfer learning upon the conventional parsing network to encode the underlying label semantic structures and propagate relevant semantic information. In particular, Graphonomy first learns and propagates compact high-level graph representation among the labels within one dataset via Intra-Graph Reasoning, and then transfers semantic information across multiple datasets via Inter-Graph Transfer. Various graph transfer dependencies (\eg, similarity, linguistic knowledge) between different datasets are analyzed and encoded to enhance graph transfer capability. By distilling universal semantic graph representation to each specific task, Graphonomy is able to predict all levels of parsing labels in one system without piling up the complexity. Experimental results show Graphonomy effectively achieves the state-of-the-art results on three human parsing benchmarks as well as advantageous universal human parsing performance.Comment: Accepted to CVPR 2019. The Code is available at https://github.com/Gaoyiminggithub/Graphonom
    corecore