3,249 research outputs found

    Zoom Better to See Clearer: Human and Object Parsing with Hierarchical Auto-Zoom Net

    Full text link
    Parsing articulated objects, e.g. humans and animals, into semantic parts (e.g. body, head and arms, etc.) from natural images is a challenging and fundamental problem for computer vision. A big difficulty is the large variability of scale and location for objects and their corresponding parts. Even limited mistakes in estimating scale and location will degrade the parsing output and cause errors in boundary details. To tackle these difficulties, we propose a "Hierarchical Auto-Zoom Net" (HAZN) for object part parsing which adapts to the local scales of objects and parts. HAZN is a sequence of two "Auto-Zoom Net" (AZNs), each employing fully convolutional networks that perform two tasks: (1) predict the locations and scales of object instances (the first AZN) or their parts (the second AZN); (2) estimate the part scores for predicted object instance or part regions. Our model can adaptively "zoom" (resize) predicted image regions into their proper scales to refine the parsing. We conduct extensive experiments over the PASCAL part datasets on humans, horses, and cows. For humans, our approach significantly outperforms the state-of-the-arts by 5% mIOU and is especially better at segmenting small instances and small parts. We obtain similar improvements for parsing cows and horses over alternative methods. In summary, our strategy of first zooming into objects and then zooming into parts is very effective. It also enables us to process different regions of the image at different scales adaptively so that, for example, we do not need to waste computational resources scaling the entire image.Comment: A shortened version has been submitted to ECCV 201

    Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

    Full text link
    Human parsing has recently attracted a lot of research interests due to its huge application potentials. However existing datasets have limited number of images and annotations, and lack the variety of human appearances and the coverage of challenging cases in unconstrained environment. In this paper, we introduce a new benchmark "Look into Person (LIP)" that makes a significant advance in terms of scalability, diversity and difficulty, a contribution that we feel is crucial for future developments in human-centric analysis. This comprehensive dataset contains over 50,000 elaborately annotated images with 19 semantic part labels, which are captured from a wider range of viewpoints, occlusions and background complexity. Given these rich annotations we perform detailed analyses of the leading human parsing approaches, gaining insights into the success and failures of these methods. Furthermore, in contrast to the existing efforts on improving the feature discriminative capability, we solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into parsing results without resorting to extra supervision (i.e., no need for specifically labeling human joints in model training). Our self-supervised learning framework can be injected into any advanced neural networks to help incorporate rich high-level knowledge regarding human joints from a global perspective and improve the parsing results. Extensive evaluations on our LIP and the public PASCAL-Person-Part dataset demonstrate the superiority of our method.Comment: Accepted to appear in CVPR 201

    Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis

    Full text link
    Despite remarkable advances in image synthesis research, existing works often fail in manipulating images under the context of large geometric transformations. Synthesizing person images conditioned on arbitrary poses is one of the most representative examples where the generation quality largely relies on the capability of identifying and modeling arbitrary transformations on different body parts. Current generative models are often built on local convolutions and overlook the key challenges (e.g. heavy occlusions, different views or dramatic appearance changes) when distinct geometric changes happen for each part, caused by arbitrary pose manipulations. This paper aims to resolve these challenges induced by geometric variability and spatial displacements via a new Soft-Gated Warping Generative Adversarial Network (Warping-GAN), which is composed of two stages: 1) it first synthesizes a target part segmentation map given a target pose, which depicts the region-level spatial layouts for guiding image synthesis with higher-level structure constraints; 2) the Warping-GAN equipped with a soft-gated warping-block learns feature-level mapping to render textures from the original image into the generated segmentation map. Warping-GAN is capable of controlling different transformation degrees given distinct target poses. Moreover, the proposed warping-block is light-weight and flexible enough to be injected into any networks. Human perceptual studies and quantitative evaluations demonstrate the superiority of our Warping-GAN that significantly outperforms all existing methods on two large datasets.Comment: 17 pages, 14 figure

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Attribute And-Or Grammar for Joint Parsing of Human Attributes, Part and Pose

    Full text link
    This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i) Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii) Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii) Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks

    The ApolloScape Open Dataset for Autonomous Driving and its Application

    Full text link
    Autonomous driving has attracted tremendous attention especially in the past few years. The key techniques for a self-driving car include solving tasks like 3D map construction, self-localization, parsing the driving road and understanding objects, which enable vehicles to reason and act. However, large scale data set for training and system evaluation is still a bottleneck for developing robust perception models. In this paper, we present the ApolloScape dataset [1] and its applications for autonomous driving. Compared with existing public datasets from real scenes, e.g. KITTI [2] or Cityscapes [3], ApolloScape contains much large and richer labelling including holistic semantic dense point cloud for each site, stereo, per-pixel semantic labelling, lanemark labelling, instance segmentation, 3D car instance, high accurate location for every frame in various driving videos from multiple sites, cities and daytimes. For each task, it contains at lease 15x larger amount of images than SOTA datasets. To label such a complete dataset, we develop various tools and algorithms specified for each task to accelerate the labelling process, such as 3D-2D segment labeling tools, active labelling in videos etc. Depend on ApolloScape, we are able to develop algorithms jointly consider the learning and inference of multiple tasks. In this paper, we provide a sensor fusion scheme integrating camera videos, consumer-grade motion sensors (GPS/IMU), and a 3D semantic map in order to achieve robust self-localization and semantic segmentation for autonomous driving. We show that practically, sensor fusion and joint learning of multiple tasks are beneficial to achieve a more robust and accurate system. We expect our dataset and proposed relevant algorithms can support and motivate researchers for further development of multi-sensor fusion and multi-task learning in the field of computer vision.Comment: Version 4: Accepted by TPAMI. Version 3: 17 pages, 10 tables, 11 figures, added the application (DeLS-3D) based on the ApolloScape Dataset. Version 2: 7 pages, 6 figures, added comparison with BDD100K datase

    Joint Multi-Person Pose Estimation and Semantic Part Segmentation

    Full text link
    Human pose estimation and semantic part segmentation are two complementary tasks in computer vision. In this paper, we propose to solve the two tasks jointly for natural multi-person images, in which the estimated pose provides object-level shape prior to regularize part segments while the part-level segments constrain the variation of pose locations. Specifically, we first train two fully convolutional neural networks (FCNs), namely Pose FCN and Part FCN, to provide initial estimation of pose joint potential and semantic part potential. Then, to refine pose joint location, the two types of potentials are fused with a fully-connected conditional random field (FCRF), where a novel segment-joint smoothness term is used to encourage semantic and spatial consistency between parts and joints. To refine part segments, the refined pose and the original part potential are integrated through a Part FCN, where the skeleton feature from pose serves as additional regularization cues for part segments. Finally, to reduce the complexity of the FCRF, we induce human detection boxes and infer the graph inside each box, making the inference forty times faster. Since there's no dataset that contains both part segments and pose labels, we extend the PASCAL VOC part dataset with human pose joints and perform extensive experiments to compare our method against several most recent strategies. We show that on this dataset our algorithm surpasses competing methods by a large margin in both tasks.Comment: This paper has been accepted by CVPR 201

    High-Resolution Representations for Labeling Pixels and Regions

    Full text link
    High-resolution representation learning plays an essential role in many vision problems, e.g., pose estimation and semantic segmentation. The high-resolution network (HRNet)~\cite{SunXLW19}, recently developed for human pose estimation, maintains high-resolution representations through the whole process by connecting high-to-low resolution convolutions in \emph{parallel} and produces strong high-resolution representations by repeatedly conducting fusions across parallel convolutions. In this paper, we conduct a further study on high-resolution representations by introducing a simple yet effective modification and apply it to a wide range of vision tasks. We augment the high-resolution representation by aggregating the (upsampled) representations from all the parallel convolutions rather than only the representation from the high-resolution convolution as done in~\cite{SunXLW19}. This simple modification leads to stronger representations, evidenced by superior results. We show top results in semantic segmentation on Cityscapes, LIP, and PASCAL Context, and facial landmark detection on AFLW, COFW, 300300W, and WFLW. In addition, we build a multi-level representation from the high-resolution representation and apply it to the Faster R-CNN object detection framework and the extended frameworks. The proposed approach achieves superior results to existing single-model networks on COCO object detection. The code and models have been publicly available at \url{https://github.com/HRNet}

    UniHCP: A Unified Model for Human-Centric Perceptions

    Full text link
    Human-centric perceptions (e.g., pose estimation, human parsing, pedestrian detection, person re-identification, etc.) play a key role in industrial applications of visual models. While specific human-centric tasks have their own relevant semantic aspect to focus on, they also share the same underlying semantic structure of the human body. However, few works have attempted to exploit such homogeneity and design a general-propose model for human-centric tasks. In this work, we revisit a broad range of human-centric tasks and unify them in a minimalist manner. We propose UniHCP, a Unified Model for Human-Centric Perceptions, which unifies a wide range of human-centric tasks in a simplified end-to-end manner with the plain vision transformer architecture. With large-scale joint training on 33 human-centric datasets, UniHCP can outperform strong baselines on several in-domain and downstream tasks by direct evaluation. When adapted to a specific task, UniHCP achieves new SOTAs on a wide range of human-centric tasks, e.g., 69.8 mIoU on CIHP for human parsing, 86.18 mA on PA-100K for attribute prediction, 90.3 mAP on Market1501 for ReID, and 85.8 JI on CrowdHuman for pedestrian detection, performing better than specialized models tailored for each task.Comment: Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR 2023

    Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation

    Full text link
    Supervised deep learning with pixel-wise training labels has great successes on multi-person part segmentation. However, data labeling at pixel-level is very expensive. To solve the problem, people have been exploring to use synthetic data to avoid the data labeling. Although it is easy to generate labels for synthetic data, the results are much worse compared to those using real data and manual labeling. The degradation of the performance is mainly due to the domain gap, i.e., the discrepancy of the pixel value statistics between real and synthetic data. In this paper, we observe that real and synthetic humans both have a skeleton (pose) representation. We found that the skeletons can effectively bridge the synthetic and real domains during the training. Our proposed approach takes advantage of the rich and realistic variations of the real data and the easily obtainable labels of the synthetic data to learn multi-person part segmentation on real images without any human-annotated labels. Through experiments, we show that without any human labeling, our method performs comparably to several state-of-the-art approaches which require human labeling on Pascal-Person-Parts and COCO-DensePose datasets. On the other hand, if part labels are also available in the real-images during training, our method outperforms the supervised state-of-the-art methods by a large margin. We further demonstrate the generalizability of our method on predicting novel keypoints in real images where no real data labels are available for the novel keypoints detection. Code and pre-trained models are available at https://github.com/kevinlin311tw/CDCL-human-part-segmentationComment: To appear in IEEE Transactions on Circuits and Systems for Video Technology; Presented at ICCV 2019 Demonstratio
    corecore