302 research outputs found

    Collective Neurofeedback in an Immersive Art Environment

    Get PDF
    While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG) based brain-computer interface (BCI) technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of- night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions

    Designing for self-transcendent experiences in virtual reality

    Get PDF
    This thesis contributes to Psychology and Human-Computer Interaction (HCI) research with a focus on the design of immersive experiences that support self-transcendence. Self-transcendence is defined as a decrease in a sense of self and a increase in unity with the world. It can change what individuals know and value, their perspective on the world and life, evolving them as a grown person. Consequently, self-transcendence is gaining attention in Psychology, Philosophy, and Neuroscience. But, we are still far from understanding the complex phenomenological and neurocognitive aspects of self-transcendence, as well as its implications for individual growth and psychological well-being. In reviewing the methods for studying self-transcendence, we found differing conceptual models determine different ways for understanding and studying self-transcendence. Understanding self-transcendence is made especially challenging because of its ineffable qualities and extraordinary conditions in which it takes place. For that reason, researchers have began to look at technological solutions for both eliciting self-transcendence to better study it under controlled and replicable conditions as well as giving people greater access to the experience. We reviewed immersive, interactive technologies that aim to support positive experiences such as self-transcendence and extracted a set of design considerations that were prevalent across experiences. We then explored two different focuses of self-transcendence: awe and lucid dreaming. First, we took an existing VR experience designed specifically to support the self-transcendent experience of awe and looked at how the mindset and physical setting surrounding that VR experience might better support the experience of and accommodation of awe. Second, we delved deep into lucid dreaming to better understand the aspects that could help inform the design of an immersive experience that supports self-transcendence. We put those design ideas into practice by developing a neurofeedback system that aims to support lucid dreaming practices in an immersive experience. Through these review papers and design explorations, we contribute to the understanding of how one might design and evaluate immersive technological experiences that support varieties of self-transcendence. We hope to inspire more work in this area that holds promise in better understanding human nature and living our best lives

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    Investigating the effects of neuromodulatory training on autistic traits: a multi-methods psychophysiological study.

    Get PDF
    Autism spectrum disorder (ASD) is characterized by noticeable difficulties with social interaction and communication. Building on past research in this area and with the aim of improving methodological perspectives, a multi method approach to the study of ASD, mirror neurons and neurofeedback was taken. This thesis is made up of three main experiments: 1) A descriptive study of the resting state electroencephalography (EEG) across the spectrum of autistic traits in neurotypical individuals, 2) A comparison of 3 EEG protocols on MNs activation (mu suppression) and its difference according to self-reported traits of autism in neurotypical individuals, and 3) Neurofeedback training (NFT) on individuals with high autistic traits. In chapters 3 and 4 we employed simultaneous monitoring of physiological data. For chapter 3 EEG and eye-tracking was used, In the case of chapter 4, EEG and eye-tracking as well functional near infrared spectroscopy (fNIRS). Overall the findings revealed differences in mu rhythm reactivity associated to AQ traits. In chapter 2, the rEEG showed that individuals with high AQ scores showed less activation of frontal and fronto-central regions combined with higher levels of complexity in fronto-temporal, temporal, parietal and parieto-occipital areas. In chapter 3, EEG protocols that elicited Mu reactivity in individuals with different AQ traits suggested that as the AQ traits become more pronounced in neurotypical population, the event-related desynchronization (ERD) in low alpha declines. Chapter 3 was also the basis for the choice of pre/post assessment for chapter 4. In chapter 4 the multi-method physiological approach provided parallel physiological evidence for the effects of NFT in sensorimotor reactivity, namely, an increase in ERD in high alpha, higher levels of oxygenated haemoglobin and changes to the amplitude and frequency in the microstructure of mu for participants who underwent active training as opposed to a sham group

    On Mapping EEG Information into Music

    Get PDF
    With the rise of ever-more affordable EEG equipment available to musicians, artists and researchers, designing and building a Brain-Computer Music Interface (BCMI) system has recently become a realistic achievement. This chapter discusses previous research in the fields of mapping, sonification and musification in the context of designing a BCMI system and will be of particular interest to those who seek to develop their own. Design of a BCMI requires unique consider-ations due to the characteristics of the EEG as a human interface device (HID). This chapter analyses traditional strategies for mapping control from brain waves alongside previous research in bio-feedback musical systems. Advances in music technology have helped provide more complex approaches with regards to how music can be affected and controlled by brainwaves. This, paralleled with devel-opments in our understanding of brainwave activity has helped push brain-computer music interfacing into innovative realms of real-time musical perfor-mance, composition and applications for music therapy

    Co-Design with Myself: A Brain-Computer Interface Design Tool that Predicts Live Emotion to Enhance Metacognitive Monitoring of Designers

    Full text link
    Intuition, metacognition, and subjective uncertainty interact in complex ways to shape the creative design process. Design intuition, a designer's innate ability to generate creative ideas and solutions based on implicit knowledge and experience, is often evaluated and refined through metacognitive monitoring. This self-awareness and management of cognitive processes can be triggered by subjective uncertainty, reflecting the designer's self-assessed confidence in their decisions. Despite their significance, few creativity support tools have targeted the enhancement of these intertwined components using biofeedback, particularly the affect associated with these processes. In this study, we introduce "Multi-Self," a BCI-VR design tool designed to amplify metacognitive monitoring in architectural design. Multi-Self evaluates designers' affect (valence and arousal) to their work, providing real-time, visual biofeedback. A proof-of-concept pilot study with 24 participants assessed its feasibility. While feedback accuracy responses were mixed, most participants found the tool useful, reporting that it sparked metacognitive monitoring, encouraged exploration of the design space, and helped modulate subjective uncertainty

    Optimising perceptuo-motor performance and learning with EEG neurofeedback

    Get PDF
    The neurobiological functions of an organism serve to assist its adaptation to behaviourally challenging environments, which commonly involves the learning and refinement of perceptuo-motor skills. The intensity and time scale at which this occurs is critical towards survival. Previous work has observed that the neurochemical and neuroelectric (EEG) operation of specific functional systems is upregulated during so-called ‘activated’ states of behaviour. Thus it has recently been shown that artificial (i.e. exogenous) stimulation of such systems via pharmacological or electrical means can successfully modulate as well as enhance learning and associated behavioural performance. We hypothesized that neurofeedback, which is implemented through non-invasive volitional control of electrocortical rhythms (EEG), offers an alternate and natural (i.e. endogenous) way to modulate and thereby stimulate analogous systems. Study 1 shows that neurofeedback is a viable and beneficial method for improving the acquisition and performance of perceptuo-motor skills in trainee microsurgeons, when compared to a wait-list control group. With the aid of transcranial magnetic stimulation (TMS), Study 2 demonstrates for the first time that 30 minutes of a single neurofeedback session directly leads to a robust and correlated change in corticomotor plasticity which is usually associated with learning or observed after exogenous stimulation. Lastly, Study 3 investigates the short-term modulation of one session of‘excitatory’ neurofeedback on the subsequent performance of a serial reaction-time task (SRTT), an experimental paradigm widely used as a model for procedural perceptuo-motor learning. In conclusion, this thesis contributes original evidence of direct as well as long-term functional enhancements following EEG neurofeedback, and supports its use as a safe, non-invasive and natural method for improving human perceptuo-motor performance and learning.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore