4,951 research outputs found

    Guiding Cooperative Stakeholders to Compromise Solutions Using an Interactive Tradespace Exploration Process

    Get PDF
    Engineering projects frequently involve the cooperation of multiple stakeholders with varying objectives and preferences for the resulting system. Finding a mutually agreeable solution is of paramount importance in order to assure the successful completion of these projects, particularly when different stakeholders are splitting the costs because none can afford to finance the project on their own. This paper proposes a process for uncovering potential mutually agreeable solutions between conflicting stakeholders, without relying on hypothetical aggregate or super-stakeholder preferences, by using guided individual preference compromises and efficiency tradeoffs. Opportunities for experimentally testing the process, with results investigating its usability and solution quality, are discussed. Further directions to improve and expand the process are also discussed, with attention paid to the design of the process as it relates to promoting an implied concept of “goodness” or “fairness” of compromise along with the ability of the process to incorporate advanced interactive technology to improve knowledge retention and understanding of the participating stakeholders.Massachusetts Institute of Technology. Systems Engineering Advancement Research Initiativ

    Improving problem definition through interactive evolutionary computation

    Get PDF
    Poor definition and uncertainty are primary characteristics of conceptual design processes. During the initial stages of these generally human-centric activities, little knowledge pertaining to the problem at hand may be available. The degree of problem definition will depend on information available in terms of appropriate variables, constraints, and both quantitative and qualitative objectives. Typically, the problem space develops with information gained in a dynamical process in which design optimization plays a secondary role, following the establishment of a sufficiently well-defined problem domain. This paper concentrates on background human-computer interaction relating to the machine-based generation of high-quality design information that, when presented in an appropriate manner to the designer, supports a better understanding of a problem domain. Knowledge gained from such information combined with the experiential knowledge of the designer can result in a reformulation of the problem, providing increased definition and greater confidence in the machine-based representation. Conceptual design domains related to gas turbine blade cooling systems and a preliminary air frame configuration are introduced. These are utilized to illustrate the integration of interactive evolutionary strategies that support the extraction of optimal design information, its presentation to the designer, and subsequent human-based modification of the design domain based on knowledge gained from the information received. An experimental iterative designer or evolutionary search process resulting in a better understanding of the problem and improved machine-based representation of the design domain is thus established

    Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense

    Get PDF
    In developing multi-robot cooperative systems, there are often competing objectives that need to be met. For example in automating area defense systems, multiple robots must work together to explore the entire area, and maintain consistent communications to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of exploration and communication maintenance in an uncoordinated environment reducing the need for a user to pre-balance the objectives. This multi-objective problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of exploration and communication maintenance are described as fitness functions in the algorithm that would satisfy their corresponding constraints. The exploration fitness was described in three ways to diversify the way exploration was measured, whereas the communication maintenance fitness was calculated as the number of independent clusters of agents. Applying the algorithm to the area defense problem, results show exploration and communication without coordination are two diametrically opposed goals, in which one may be favored, but only at the expense of the other. This work also presents suggestions for anyone looking to take further steps in developing a physically grounded solution to this area defense problem

    Parametric BIM-based Design Review

    Get PDF
    This research addressed the need for a new design review technology and method to express the tangible and intangible qualities of architectural experience of parametric BIM-based design projects. The research produced an innovative presentation tool by which parametric design is presented systematically. Focus groups provided assessments of the tool to reveal the usefulness of a parametric BIM-based design review method. The way in which we visualize architecture affects the way we design and perceive architectural form and performance. Contemporary architectural forms and systems are very complex, yet most architects who use Building Information Modeling (BIM) and generative design methods still embrace the two-dimensional 15th-century Albertian representational methods to express and review design projects. However, architecture cannot be fully perceived through a set of drawings that mediate our perception and evaluation of the built environment. The systematic and conventional approach of traditional architectural representation, in paper-based and slide-based design reviews, is not able to visualize phenomenal experience nor the inherent variation and versioning of parametric models. Pre-recorded walk-throughs with high quality rendering and imaging have been in use for decades, but high verisimilitude interactive walk-throughs are not commonly used in architectural presentations. The new generations of parametric and BIM systems allow for the quick production of variations in design by varying design parameters and their relationships. However, there is a lack of tools capable of conducting design reviews that engage the advantages of parametric and BIM design projects. Given the multitude of possibilities of in-game interface design, game-engines provide an opportunity for the creation of an interactive, parametric, and performance-oriented experience of architectural projects with multi-design options. This research has produced a concept for a dynamic presentation and review tool and method intended to meet the needs of parametric design, performance-based evaluation, and optimization of multi-objective design options. The concept is illustrated and tested using a prototype (Parametric Design Review, or PDR) based upon an interactive gaming environment equipped with a novel user interface that simultaneously engages the parametric framework, object parameters, multi-objective optimized design options and their performances with diagrammatic, perspectival, and orthographic representations. The prototype was presented to representative users in multiple focus group sessions. Focus group discussion data reveal that the proposed PDR interface was perceived to be useful if used for design reviews in both academic and professional practice settings
    • …
    corecore