458 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    CENTURION: Incentivizing Multi-Requester Mobile Crowd Sensing

    Full text link
    The recent proliferation of increasingly capable mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to a crowd of participating workers that carry various mobile devices. Aware of the paramount importance of effectively incentivizing participation in such systems, the research community has proposed a wide variety of incentive mechanisms. However, different from most of these existing mechanisms which assume the existence of only one data requester, we consider MCS systems with multiple data requesters, which are actually more common in practice. Specifically, our incentive mechanism is based on double auction, and is able to stimulate the participation of both data requesters and workers. In real practice, the incentive mechanism is typically not an isolated module, but interacts with the data aggregation mechanism that aggregates workers' data. For this reason, we propose CENTURION, a novel integrated framework for multi-requester MCS systems, consisting of the aforementioned incentive and data aggregation mechanism. CENTURION's incentive mechanism satisfies truthfulness, individual rationality, computational efficiency, as well as guaranteeing non-negative social welfare, and its data aggregation mechanism generates highly accurate aggregated results. The desirable properties of CENTURION are validated through both theoretical analysis and extensive simulations

    TIMCC: On Data Freshness in Privacy-Preserving Incentive Mechanism Design for Continuous Crowdsensing Using Reverse Auction

    Get PDF
    © 2013 IEEE. As an emerging paradigm that leverages the wisdom and efforts of the crowd, mobile crowdsensing has shown its great potential to collect distributed data. The crowd may incur such costs and risks as energy consumption, memory consumption, and privacy leakage when performing various tasks, so they may not be willing to participate in crowdsensing tasks unless they are well-paid. Hence, a proper privacy-preserving incentive mechanism is of great significance to motivate users to join, which has attracted a lot of research efforts. Most of the existing works regard tasks as one-shot tasks, which may not work very well for the type of tasks that requires continuous monitoring, e.g., WIFI signal sensing, where the WiFi signal may vary over time, and users are required to contribute continuous efforts. The incentive mechanism for continuous crowdsensing has yet to be investigated, where the corresponding tasks need continuous efforts of users, and the freshness of the sensed data is very important. In this paper, we design TIMCC, a privacy-preserving incentive mechanism for continuous crowdsensing. In contrast to most existing studies that treat tasks as one-shot tasks, we consider the tasks that require users to contribute continuous efforts, where the freshness of data is a key factor impacting the value of data, which further determines the rewards. We introduce a metric named age of data that is defined as the amount of time elapsed since the generation of the data to capture the freshness of data. We adopt the reverse auction framework to model the connection between the platform and the users. We prove that the proposed mechanism satisfies individual rationality, computational efficiency, and truthfulness. Simulation results further validate our theoretical analysis and the effectiveness of the proposed mechanism

    MODELING AND RESOURCE ALLOCATION IN MOBILE WIRELESS NETWORKS

    Get PDF
    We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and radio resources in a wireless network can also be provisioned as a service to Mobile Virtual Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this thesis, we present a novel auction-based model to enable fair pricing and fair resource allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model, we study the auction mechanism design with the objective of maximizing social welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based auction mechanism for obtaining optimal social welfare. To reduce time complexity, we present a polynomial-time greedy mechanism for the RaaS auction. Both methods have been formally shown to be truthful and individually rational. Meanwhile, wireless networks have become more and more advanced and complicated, which are generating a large amount of runtime system statistics. In this thesis, we also propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. We present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Mobile wireless networks have become an essential part in wireless networking with the prevalence of mobile device usage. Most mobile devices have powerful sensing capabilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a multi-application multi-task system that supports a large variety of sensing applications. In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality of services/data each individual mobile user and the whole crowd are potentially capable of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained MCS, in which each sensing task is divided into multiple subtasks and a mobile user may make contributions to multiple subtasks. More specifically, we first introduce mathematical models for characterizing the quality of a recruited crowd for different sensing applications. Based on these models, we present a novel auction formulation for quality-aware and fine- grained MCS, which minimizes the expected expenditure subject to the quality requirement of each subtask. Then we discuss how to achieve the optimal expected expenditure, and present a practical incentive mechanism to solve the auction problem, which is shown to have the desirable properties of truthfulness, individual rationality and computational efficiency. In a MCS system, a sensing task is dispatched to many smartphones for data collections; in the meanwhile, a smartphone undertakes many different sensing tasks that demand data from various sensors. In this thesis, we also consider the problem of scheduling different sensing tasks assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case in which each sensing task only requests data from a single sensor. We formally define the corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we address a more general case in which some sensing tasks request multiple sensors to re- port their measurements simultaneously. We present an Integer Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms, for the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods

    Incentive Mechanism Design in Mobile Crowdsensing Systems

    Get PDF
    In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing tasks, and mobile users equipped with mobile devices, in which the mobile users carry out sensing tasks and receive monetary rewards as compensation for resource consumption ( e.g., energy, bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure). Compared with traditional mote-class sensor networks, MCSs can reduce the cost of deploying specialized sensing infrastructures and enable many applications that require resources and sensing modalities beyond the current mote-class sensor processes as today’s mobile devices (smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sensing devices (GPS)) integrate more computing, communication, and storage resources than traditional mote-class sensors. The current applications of MCSs include traffic congestion detection, wireless indoor localization, pollution monitoring, etc . There is no doubt that one of the most significant characteristics of MCSs is the active involvement of mobile users to collect and share sensory data. In this dissertation, we study the incentive mechanism design in mobile crowdsensing system with consideration of economic properties. Firstly, we investigate the problem of joining sensing task assignment and scheduling in MCSs with the following three considerations: i) partial fulfillment, ii) attribute diversity, and iii) price diversity. Then, we design a distributed auction framework to allow each task owner to independently process its local auction without collecting global information in a MCS, reducing communication cost. Next, we propose a cost-preferred auction scheme (CPAS) to assign each winning mobile user one or more sub- working time durations and a time schedule-preferred auction scheme (TPAS) to allocate each winning mobile user a continuous working time duration. Secondly, we focus on the design of an incentive mechanism for an MCS to minimize the social cost. The social cost represents the total cost of mobile devices when all tasks published by the MCS are finished. We first present the working process of a MCS, and then build an auction market for the MCS where the MCS platform acts as an auctioneer and users with mobile devices act as bidders. Depending on the different requirements of the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based auction mechanism for the continuous working pattern and a suboptimal auction mechanism for the discontinuous working pattern. Both of them can ensure that the bidding of users are processed in a truthful way and the utilities of users are maximized. Through rigorous theoretical analysis and comprehensive simulations, we can prove that these incentive mechanisms satisfy economic properties and can be implemented in reasonable time complexcity. Next, we discuss the importance of fairness and unconsciousness of MCS surveillance applications. Then, we propose offline and online incentive mechanisms with fair task scheduling based on the proportional share allocation rules. Furthermore, to have more sensing tasks done over time dimension, we relax the truthfulness and unconsciousness property requirements and design a (ε, μ)-unconsciousness online incentive mechanism. Real map data are used to validate these proposed incentive mechanisms through extensive simulations. Finally, future research topics are proposed to complete the dissertation

    POEM: Pricing Longer for Edge Computing in the Device Cloud

    Full text link
    Multiple access mobile edge computing has been proposed as a promising technology to bring computation services close to end users, by making good use of edge cloud servers. In mobile device clouds (MDC), idle end devices may act as edge servers to offer computation services for busy end devices. Most existing auction based incentive mechanisms in MDC focus on only one round auction without considering the time correlation. Moreover, although existing single round auctions can also be used for multiple times, users should trade with higher bids to get more resources in the cascading rounds of auctions, then their budgets will run out too early to participate in the next auction, leading to auction failures and the whole benefit may suffer. In this paper, we formulate the computation offloading problem as a social welfare optimization problem with given budgets of mobile devices, and consider pricing longer of mobile devices. This problem is a multiple-choice multi-dimensional 0-1 knapsack problem, which is a NP-hard problem. We propose an auction framework named MAFL for long-term benefits that runs a single round resource auction in each round. Extensive simulation results show that the proposed auction mechanism outperforms the single round by about 55.6% on the revenue on average and MAFL outperforms existing double auction by about 68.6% in terms of the revenue.Comment: 8 pages, 1 figure, Accepted by the 18th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP
    • …
    corecore