2,742 research outputs found

    Improved Bounds for the Excluded-Minor Approximation of Treedepth

    Get PDF
    Treedepth, a more restrictive graph width parameter than treewidth and pathwidth, plays a major role in the theory of sparse graph classes. We show that there exists a constant C such that for every integers a,b >= 2 and a graph G, if the treedepth of G is at least Cab log a, then the treewidth of G is at least a or G contains a subcubic (i.e., of maximum degree at most 3) tree of treedepth at least b as a subgraph. As a direct corollary, we obtain that every graph of treedepth Omega(k^3 log k) is either of treewidth at least k, contains a subdivision of full binary tree of depth k, or contains a path of length 2^k. This improves the bound of Omega(k^5 log^2 k) of Kawarabayashi and Rossman [SODA 2018]. We also show an application for approximation algorithms of treedepth: given a graph G of treedepth k and treewidth t, one can in polynomial time compute a treedepth decomposition of G of width O(kt log^{3/2} t). This improves upon a bound of O(kt^2 log t) stemming from a tradeoff between known results. The main technical ingredient in our result is a proof that every tree of treedepth d contains a subcubic subtree of treedepth at least d * log_3 ((1+sqrt{5})/2)

    Compressive Sensing Theory for Optical Systems Described by a Continuous Model

    Full text link
    A brief survey of the author and collaborators' work in compressive sensing applications to continuous imaging models.Comment: Chapter 3 of "Optical Compressive Imaging" edited by Adrian Stern published by Taylor & Francis 201

    Optimal Net-Load Balancing in Smart Grids with High PV Penetration

    Full text link
    Mitigating Supply-Demand mismatch is critical for smooth power grid operation. Traditionally, load curtailment techniques such as Demand Response (DR) have been used for this purpose. However, these cannot be the only component of a net-load balancing framework for Smart Grids with high PV penetration. These grids can sometimes exhibit supply surplus causing over-voltages. Supply curtailment techniques such as Volt-Var Optimizations are complex and computationally expensive. This increases the complexity of net-load balancing systems used by the grid operator and limits their scalability. Recently new technologies have been developed that enable the rapid and selective connection of PV modules of an installation to the grid. Taking advantage of these advancements, we develop a unified optimal net-load balancing framework which performs both load and solar curtailment. We show that when the available curtailment values are discrete, this problem is NP-hard and develop bounded approximation algorithms for minimizing the curtailment cost. Our algorithms produce fast solutions, given the tight timing constraints required for grid operation. We also incorporate the notion of fairness to ensure that curtailment is evenly distributed among all the nodes. Finally, we develop an online algorithm which performs net-load balancing using only data available for the current interval. Using both theoretical analysis and practical evaluations, we show that our net-load balancing algorithms provide solutions which are close to optimal in a small amount of time.Comment: 11 pages. To be published in the 4th ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys 17) Changes from previous version: Fixed a bug in Algorithm 1 which was causing some min cost solutions to be misse

    Dispersion processes

    Get PDF
    We study a synchronous dispersion process in which MM particles are initially placed at a distinguished origin vertex of a graph GG. At each time step, at each vertex vv occupied by more than one particle at the beginning of this step, each of these particles moves to a neighbour of vv chosen independently and uniformly at random. The dispersion process ends once the particles have all stopped moving, i.e. at the first step at which each vertex is occupied by at most one particle. For the complete graph KnK_n and star graph SnS_n, we show that for any constant δ>1\delta>1, with high probability, if Mn/2(1δ)M \le n/2(1-\delta), then the process finishes in O(logn)O(\log n) steps, whereas if Mn/2(1+δ)M \ge n/2(1+\delta), then the process needs eΩ(n)e^{\Omega(n)} steps to complete (if ever). We also show that an analogous lazy variant of the process exhibits the same behaviour but for higher thresholds, allowing faster dispersion of more particles. For paths, trees, grids, hypercubes and Cayley graphs of large enough sizes (in terms of MM) we give bounds on the time to finish and the maximum distance traveled from the origin as a function of the number of particles MM

    Bayesian Reinforcement Learning via Deep, Sparse Sampling

    Full text link
    We address the problem of Bayesian reinforcement learning using efficient model-based online planning. We propose an optimism-free Bayes-adaptive algorithm to induce deeper and sparser exploration with a theoretical bound on its performance relative to the Bayes optimal policy, with a lower computational complexity. The main novelty is the use of a candidate policy generator, to generate long-term options in the planning tree (over beliefs), which allows us to create much sparser and deeper trees. Experimental results on different environments show that in comparison to the state-of-the-art, our algorithm is both computationally more efficient, and obtains significantly higher reward in discrete environments.Comment: Published in AISTATS 202

    Towards a Theory of Parameterized Streaming Algorithms

    Get PDF
    Parameterized complexity attempts to give a more fine-grained analysis of the complexity of problems: instead of measuring the running time as a function of only the input size, we analyze the running time with respect to additional parameters. This approach has proven to be highly successful in delineating our understanding of NP-hard problems. Given this success with the TIME resource, it seems but natural to use this approach for dealing with the SPACE resource. First attempts in this direction have considered a few individual problems, with some success: Fafianie and Kratsch [MFCS\u2714] and Chitnis et al. [SODA\u2715] introduced the notions of streaming kernels and parameterized streaming algorithms respectively. For example, the latter shows how to refine the Omega(n^2) bit lower bound for finding a minimum Vertex Cover (VC) in the streaming setting by designing an algorithm for the parameterized k-VC problem which uses O(k^{2}log n) bits. In this paper, we initiate a systematic study of graph problems from the paradigm of parameterized streaming algorithms. We first define a natural hierarchy of space complexity classes of FPS, SubPS, SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied graph problems such as Longest Path, Feedback Vertex Set, Dominating Set, Girth, Treewidth, etc. into this hierarchy (see Figure 1 and Table 1). On the algorithmic side, our parameterized streaming algorithms use techniques from the FPT world such as bidimensionality, iterative compression and bounded-depth search trees. On the hardness side, we obtain lower bounds for the parameterized streaming complexity of various problems via novel reductions from problems in communication complexity. We also show a general (unconditional) lower bound for space complexity of parameterized streaming algorithms for a large class of problems inspired by the recently developed frameworks for showing (conditional) kernelization lower bounds. Parameterized algorithms and streaming algorithms are approaches to cope with TIME and SPACE intractability respectively. It is our hope that this work on parameterized streaming algorithms leads to two-way flow of ideas between these two previously separated areas of theoretical computer science
    corecore