5,890 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Generation of virus-specific cytotoxic T cells in vitro I. Induction conditions of primary and secondary Sendai virus-specific cytotoxic T cells

    Get PDF
    H-2-restricted cytotoxic T cells specific for Sendai virus were generated in vitro in a primary response from normal mouse lymphocytes cultured in the presence of infective as well as inactivated Sendai virus. Antigen-presenting cells of different origin, including T cells, were found to be effective stimulators. Antibodies to Sendai virus were shown to inhibit the activation of specific precursor killer cells when added to cultures before, but not after, the addition of viral antigen. Data obtained by Lyt phenotyping, revealed that precursor killer cells specific for Sendai virus reside in the Lyt-2,3+ T cell population and that Lyt-l,2,3+ T cells are not required for the generation of cytotoxic lymphocytes. Different activation kinetics were demonstrated for primary and secondary antiviral cytotoxic responses, and the analysis of the proliferation and stimulation requirements suggests qualitative differences

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Concurrent Design of Embedded Control Software

    Get PDF
    Embedded software design for mechatronic systems is becoming an increasingly time-consuming and error-prone task. In order to cope with the heterogeneity and complexity, a systematic model-driven design approach is needed, where several parts of the system can be designed concurrently. There is however a trade-off between concurrency efficiency and integration efficiency. In this paper, we present a case study on the development of the embedded control software for a real-world mechatronic system in order to evaluate how we can integrate concurrent and largely independent designed embedded system software parts in an efficient way. The case study was executed using our embedded control system design methodology which employs a concurrent systematic model-based design approach that ensures a concurrent design process, while it still allows a fast integration phase by using automatic code synthesis. The result was a predictable concurrently designed embedded software realization with a short integration time

    A Formal Method for Modeling, Verification and Synthesis of Embedded Reactive Systems

    No full text
    Embedded reactive systems are now invisible and everywhere, and are adopted, for instance, to monitor and control critical tasks in cars, airplanes, traffic, and industrial plants. However, the increasing amount of new functionalities being moved to software leads to difficulties in verifying the design correctness. In this context, we propose a novel design method called BARE Model, which is a formal abstraction to design, verify and synthesize software in embedded reactive applications. The method consists in designing the application using an extension of the well-known finite state machine, called X-machine. We thus propose to translate this model to a tabular data structure, which is a kind of state transition table augmented with memory input, memory output, and condition (or guard). This tabular structure may be automatically translated to the input of the NuSMV model checker in order to verify the system’s properties. We also propose a runtime environment to execute the system (expressed as a tabular data structure) in a specific platform. In this way, we can convert the high-level specification into executable code that runs on a target platform. To show the practical usability of our proposed method, we experimented it with the Envirotrack case study. The experiment shows that the proposed method is able to not only model the system, but also to verify safety and liveness properties, and synthesize executable code of real-world applications

    Implementation Of A Novel Cooperative Protocol for Distributed Voltage Control in Active Distribution Networks

    Get PDF
    Microgrids are small localized grids that help to integrate many renewable-energy sources into the main electric grid. Microgrids can also operate separately from the main electric grid during faults to enhance the customers reliability. For a successful integration of microgrids we need to control the voltage at the distributed generation units in order to achieve the required sharing of reactive power. For this purpose a multiagent based distributed control scheme is implemented in this thesis. The objective of this thesis is to design and implement a multiagent system for the microgrid that has distributed battery energy storage systems (BESS) and renewable distributed generation (DG) units. The proposed multiagent system has been designed to coordinate among distributed generation (DG) units to control voltage. Multiagent system is composed of multiple agents that communicate to solve problems. The proposed multiagent system for the control of microgrid has been implemented on Texas Instruments Tiva-C controller boards. The real time simulator Opal-RT has been used to create a microgrid model. Hardware testing is done in real time

    Analog Property Checkers: A Ddr2 Case Study

    Get PDF
    The formal specification component of verification can be exported to simulation through the idea of property checkers. The essence of this approach is the automatic construction of an observer from the specification in the form of a program that can be interfaced with a simulator and alert the user if the property is violated by a simulation trace. Although not complete, this lighter approach to formal verification has been effectively used in software and digital hardware to detect errors. Recently, the idea of property checkers has been extended to analog and mixed-signal systems. In this paper, we apply the property-based checking methodology to an industrial and realistic example of a DDR2 memory interface. The properties describing the DDR2 analog behavior are expressed in the formal specification language stl/psl in form of assertions. The simulation traces generated from an actual DDR2 interface design are checked with respect to the stl/psl assertions using the amt tool. The focus of this paper is on the translation of the official (informal and descriptive) specification of two non-trivial DDR2 properties into stl/psl assertions. We study both the benefits and the current limits of such approach

    Demonstration of visualization techniques for the control room engineer in 2030.:ELECTRA Deliverable D8.1. WP8: Future Control Room Functionality

    Get PDF
    Deliverable 8.1 reports results on analytics and visualizations of real time flexibility in support of voltage and frequency control in 2030+ power system. The investigation is carried out by means of relevant control room scenarios in order to derive the appropriate analytics needed for each specific network event

    Adaptability Checking in Multi-Level Complex Systems

    Full text link
    A hierarchical model for multi-level adaptive systems is built on two basic levels: a lower behavioural level B accounting for the actual behaviour of the system and an upper structural level S describing the adaptation dynamics of the system. The behavioural level is modelled as a state machine and the structural level as a higher-order system whose states have associated logical formulas (constraints) over observables of the behavioural level. S is used to capture the global and stable features of B, by a defining set of allowed behaviours. The adaptation semantics is such that the upper S level imposes constraints on the lower B level, which has to adapt whenever it no longer can satisfy them. In this context, we introduce weak and strong adaptabil- ity, i.e. the ability of a system to adapt for some evolution paths or for all possible evolutions, respectively. We provide a relational characterisation for these two notions and we show that adaptability checking, i.e. deciding if a system is weak or strong adaptable, can be reduced to a CTL model checking problem. We apply the model and the theoretical results to the case study of motion control of autonomous transport vehicles.Comment: 57 page, 10 figures, research papaer, submitte
    corecore