45,892 research outputs found

    Spaceprint: a Mobility-based Fingerprinting Scheme for Public Spaces

    Get PDF
    In this paper, we address the problem of how automated situation-awareness can be achieved by learning real-world situations from ubiquitously generated mobility data. Without semantic input about the time and space where situations take place, this turns out to be a fundamental challenging problem. Uncertainties also introduce technical challenges when data is generated in irregular time intervals, being mixed with noise, and errors. Purely relying on temporal patterns observable in mobility data, in this paper, we propose Spaceprint, a fully automated algorithm for finding the repetitive pattern of similar situations in spaces. We evaluate this technique by showing how the latent variables describing the category, and the actual identity of a space can be discovered from the extracted situation patterns. Doing so, we use different real-world mobility datasets with data about the presence of mobile entities in a variety of spaces. We also evaluate the performance of this technique by showing its robustness against uncertainties

    Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects

    Full text link
    Perceiving the surrounding environment in terms of objects is useful for any general purpose intelligent agent. In this paper, we investigate a fundamental mechanism making object perception possible, namely the identification of spatio-temporally invariant structures in the sensorimotor experience of an agent. We take inspiration from the Sensorimotor Contingencies Theory to define a computational model of this mechanism through a sensorimotor, unsupervised and predictive approach. Our model is based on processing the unsupervised interaction of an artificial agent with its environment. We show how spatio-temporally invariant structures in the environment induce regularities in the sensorimotor experience of an agent, and how this agent, while building a predictive model of its sensorimotor experience, can capture them as densely connected subgraphs in a graph of sensory states connected by motor commands. Our approach is focused on elementary mechanisms, and is illustrated with a set of simple experiments in which an agent interacts with an environment. We show how the agent can build an internal model of moving but spatio-temporally invariant structures by performing a Spectral Clustering of the graph modeling its overall sensorimotor experiences. We systematically examine properties of the model, shedding light more globally on the specificities of the paradigm with respect to methods based on the supervised processing of collections of static images.Comment: 24 pages, 10 figures, published in Frontiers Robotics and A

    Data mining based cyber-attack detection

    Get PDF

    Data Mining Applications in Higher Education and Academic Intelligence Management

    Get PDF
    Higher education institutions are nucleus of research and future development acting in a competitive environment, with the prerequisite mission to generate, accumulate and share knowledge. The chain of generating knowledge inside and among external organizations (such as companies, other universities, partners, community) is considered essential to reduce the limitations of internal resources and could be plainly improved with the use of data mining technologies. Data mining has proven to be in the recent years a pioneering field of research and investigation that faces a large variety of techniques applied in a multitude of areas, both in business and higher education, relating interdisciplinary studies and development and covering a large variety of practice. Universities require an important amount of significant knowledge mined from its past and current data sets using special methods and processes. The ways in which information and knowledge are represented and delivered to the university managers are in a continuous transformation due to the involvement of the information and communication technologies in all the academic processes. Higher education institutions have long been interested in predicting the paths of students and alumni (Luan, 2004), thus identifying which students will join particular course programs (Kalathur, 2006), and which students will require assistance in order to graduate. Another important preoccupation is the academic failure among students which has long fuelled a large number of debates. Researchers (Vandamme et al., 2007) attempted to classify students into different clusters with dissimilar risks in exam failure, but also to detect with realistic accuracy what and how much the students know, in order to deduce specific learning gaps (Piementel & Omar, 2005). The distance and on-line education, together with the intelligent tutoring systems and their capability to register its exchanges with students (Mostow et al., 2005) present various feasible information sources for the data mining processes. Studies based on collecting and interpreting the information from several courses could possibly assist teachers and students in the web-based learning setting (Myller et al., 2002). Scientists (Anjewierden et al., 2007) derived models for classifying chat messages using data mining techniques, in order to offer learners real-time adaptive feedback which could result in the improvement of learning environments. In scientific literature there are some studies which seek to classify students in order to predict their final grade based on features extracted from logged data ineducational web-based systems (Minaei-Bidgoli & Punch, 2003). A combination of multiple classifiers led to a significant improvement in classification performance through weighting the feature vectors. The author’s research directions through the data mining practices consist in finding feasible ways to offer the higher education institutions’ managers ample knowledge to prepare new hypothesis, in a short period of time, which was formerly rigid or unachievable, in view of large datasets and earlier methods. Therefore, the aim is to put forward a way to understand the students’ opinions, satisfactions and discontentment in the each element of the educational process, and to predict their preference in certain fields of study, the choice in continuing education, academic failure, and to offer accurate correlations between their knowledge and the requirements in the labor market. Some of the most interesting data mining processes in the educational field are illustrated in the present chapter, in which the author adds own ideas and applications in educational issues using specific data mining techniques. The organization of this chapter is as follows. Section 2 offers an insight of how data mining processes are being applied in the large spectrum of education, presenting recent applications and studies published in the scientific literature, significant to the development of this emerging science. In Section 3 the author introduces his work through a number of new proposed directions and applications conducted over data collected from the students of the Babes-Bolyai University, using specific data mining classification learning and clustering methods. Section 4 presents the integration of data mining processes and their particular role in higher education issues and management, for the conception of an Academic Intelligence Management. Interrelated future research and plans are discussed as a conclusion in Section 5.data mining,data clustering, higher education, decision trees, C4.5 algorithm, k-means, decision support, academic intelligence management

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves
    • …
    corecore