22,828 research outputs found

    Changing Trains at Wigan: Digital Preservation and the Future of Scholarship

    Get PDF
    This paper examines the impact of the emerging digital landscape on long term access to material created in digital form and its use for research; it examines challenges, risks and expectations.

    Data-aware Synthetic Log Generation for Declarative Process Models

    Get PDF
    Äriprotsesside juhtimises on protsessikaeve klass meetodeid, mida kasutatakse protsessi struktuuri Ă”ppimiseks tĂ€itmislogist. Selle struktuur on esindatud kui protsessi mudel: kas menetluslik vĂ”i deklaratiivne. NĂ€ited deklaratiivsetest keeltest on Declare, DPIL ja DCR Graphs. Selleks, et testida ja parandada protsessi kaevandamise algoritme on vaja palju logisid erinevate parameetritega ja alati ei ole vĂ”imalik saada piisavalt reaalseid logisid. See on koht, kus tehislikud logid tulevad kasuks. On olemas meetodeid logi genereerimiseks DPIL-ist ja deklaratiivsetest mudelitest, kuid puuduvad vahendid logi genereerimiseks MPDeclare-ist, mis on multiperspektiivne versioon Declare-ist andmete toega. KĂ€esolev magistritöö kĂ€sitleb MP-Declare mudelitest logide genereerimist kasutades kaht erinevat mudelite kontrollijat: Alloy ja NuSMV. Selleks, et parandada jĂ”udlust, optimeerisime kirjanduses saadaval olevaid baaslĂ€henemisi. KĂ”ik kĂ€sitletud tehnikad implementeeritakse ja testitakse kasutades saadaval olevat sobivuse testimise tööriistu ja meie enda vĂ€ljatöötatud teste. Meie generaatorite hindamiseks ja vĂ”rdluseks olemasolevate lahendustega mÔÔtsime me logide genereerimise aega ja seda, kuidas see muutub erinevate parameetrite ja mudelitega. Me töötasime vĂ€lja erinevad mÔÔdupuud logide varieeruvuse arvutamiseks ja rakendasime neid uuritavatele generaatoritele.In Business Process Management, process mining is a class of techniques for learning process structure from an execution log. This structure is represented as a process model: either procedural or declarative. Examples of declarative languages are Declare, DPIL and DCR Graphs. In order to test and improve process mining algorithms a lot of logs with different parameters are required, and it is not always possible to get enough real logs. And this is where artificial logs are useful. There exist techniques for log generation from DPIL and declare-based models. But there are no tools for generating logs from MP-Declare – multiperspective version of Declare with data support. This thesis introduces an approach to log generation from MP-Declare models using two different model checkers: Alloy and NuSMV. In order to improve performance, we applied optimization to baseline approaches available in the literature. All of the discussed techniques are implemented and tested using existing conformance checking tools and our tests. To evaluate performance of our generators and compare them with existing ones, we measured time required for generating log and how it changes with different parameters and models. We also designed several metrics for computing log variability, and applied them to reviewed generators

    Attention and Anticipation in Fast Visual-Inertial Navigation

    Get PDF
    We study a Visual-Inertial Navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of visual-inertial navigation? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate visual-inertial navigation while appearance-based feature selection fails to track robot's motion during aggressive maneuvers.Comment: 20 pages, 7 figures, 2 table

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    A network approach for managing and processing big cancer data in clouds

    Get PDF
    Translational cancer research requires integrative analysis of multiple levels of big cancer data to identify and treat cancer. In order to address the issues that data is decentralised, growing and continually being updated, and the content living or archiving on different information sources partially overlaps creating redundancies as well as contradictions and inconsistencies, we develop a data network model and technology for constructing and managing big cancer data. To support our data network approach for data process and analysis, we employ a semantic content network approach and adopt the CELAR cloud platform. The prototype implementation shows that the CELAR cloud can satisfy the on-demanding needs of various data resources for management and process of big cancer data

    Enhanced Multimedia Exchanges over the Internet

    Get PDF
    Although the Internet was not originally designed for exchanging multimedia streams, consumers heavily depend on it for audiovisual data delivery. The intermittent nature of multimedia traffic, the unguaranteed underlying communication infrastructure, and dynamic user behavior collectively result in the degradation of Quality-of-Service (QoS) and Quality-of-Experience (QoE) perceived by end-users. Consequently, the volume of signalling messages is inevitably increased to compensate for the degradation of the desired service qualities. Improved multimedia services could leverage adaptive streaming as well as blockchain-based solutions to enhance media-rich experiences over the Internet at the cost of increased signalling volume. Many recent studies in the literature provide signalling reduction and blockchain-based methods for authenticated media access over the Internet while utilizing resources quasi-efficiently. To further increase the efficiency of multimedia communications, novel signalling overhead and content access latency reduction solutions are investigated in this dissertation including: (1) the first two research topics utilize steganography to reduce signalling bandwidth utilization while increasing the capacity of the multimedia network; and (2) the third research topic utilizes multimedia content access request management schemes to guarantee throughput values for servicing users, end-devices, and the network. Signalling of multimedia streaming is generated at every layer of the communication protocol stack; At the highest layer, segment requests are generated, and at the lower layers, byte tracking messages are exchanged. Through leveraging steganography, essential signalling information is encoded within multimedia payloads to reduce the amount of resources consumed by non-payload data. The first steganographic solution hides signalling messages within multimedia payloads, thereby freeing intermediate node buffers from queuing non-payload packets. Consequently, source nodes are capable of delivering control information to receiving nodes at no additional network overhead. A utility function is designed to minimize the volume of overhead exchanged while minimizing visual artifacts. Therefore, the proposed scheme is designed to leverage the fidelity of the multimedia stream to reduce the largest amount of control overhead with the lowest negative visual impact. The second steganographic solution enables protocol translation through embedding packet header information within payload data to alternatively utilize lightweight headers. The protocol translator leverages a proposed utility function to enable the maximum number of translations while maintaining QoS and QoE requirements in terms of packet throughput and playback bit-rate. As the number of multimedia users and sources increases, decentralized content access and management over a blockchain-based system is inevitable. Blockchain technologies suffer from large processing latencies; consequently reducing the throughput of a multimedia network. Reducing blockchain-based access latencies is therefore essential to maintaining a decentralized scalable model with seamless functionality and efficient utilization of resources. Adapting blockchains to feeless applications will then port the utility of ledger-based networks to audiovisual applications in a faultless manner. The proposed transaction processing scheme will enable ledger maintainers in sustaining desired throughputs necessary for delivering expected QoS and QoE values for decentralized audiovisual platforms. A block slicing algorithm is designed to ensure that the ledger maintenance strategy is benefiting the operations of the blockchain-based multimedia network. Using the proposed algorithm, the throughput and latency of operations within the multimedia network are then maintained at a desired level
    • 

    corecore