4,755 research outputs found

    Joint Generative and Contrastive Learning for Unsupervised Person Re-identification

    Full text link
    Recent self-supervised contrastive learning provides an effective approach for unsupervised person re-identification (ReID) by learning invariance from different views (transformed versions) of an input. In this paper, we incorporate a Generative Adversarial Network (GAN) and a contrastive learning module into one joint training framework. While the GAN provides online data augmentation for contrastive learning, the contrastive module learns view-invariant features for generation. In this context, we propose a mesh-based view generator. Specifically, mesh projections serve as references towards generating novel views of a person. In addition, we propose a view-invariant loss to facilitate contrastive learning between original and generated views. Deviating from previous GAN-based unsupervised ReID methods involving domain adaptation, we do not rely on a labeled source dataset, which makes our method more flexible. Extensive experimental results show that our method significantly outperforms state-of-the-art methods under both, fully unsupervised and unsupervised domain adaptive settings on several large scale ReID datsets.Comment: CVPR 2021. Source code: https://github.com/chenhao2345/GC

    GeT: Generative Target Structure Debiasing for Domain Adaptation

    Full text link
    Domain adaptation (DA) aims to transfer knowledge from a fully labeled source to a scarcely labeled or totally unlabeled target under domain shift. Recently, semi-supervised learning-based (SSL) techniques that leverage pseudo labeling have been increasingly used in DA. Despite the competitive performance, these pseudo labeling methods rely heavily on the source domain to generate pseudo labels for the target domain and therefore still suffer considerably from source data bias. Moreover, class distribution bias in the target domain is also often ignored in the pseudo label generation and thus leading to further deterioration of performance. In this paper, we propose GeT that learns a non-bias target embedding distribution with high quality pseudo labels. Specifically, we formulate an online target generative classifier to induce the target distribution into distinctive Gaussian components weighted by their class priors to mitigate source data bias and enhance target class discriminability. We further propose a structure similarity regularization framework to alleviate target class distribution bias and further improve target class discriminability. Experimental results show that our proposed GeT is effective and achieves consistent improvements under various DA settings with and without class distribution bias. Our code is available at: https://lulusindazc.github.io/getproject/.Comment: Accepted by ICCV202

    Semi-Supervised and Unsupervised Deep Visual Learning: A Survey

    Get PDF
    State-of-the-art deep learning models are often trained with a large amountof costly labeled training data. However, requiring exhaustive manualannotations may degrade the model's generalizability in the limited-labelregime. Semi-supervised learning and unsupervised learning offer promisingparadigms to learn from an abundance of unlabeled visual data. Recent progressin these paradigms has indicated the strong benefits of leveraging unlabeleddata to improve model generalization and provide better model initialization.In this survey, we review the recent advanced deep learning algorithms onsemi-supervised learning (SSL) and unsupervised learning (UL) for visualrecognition from a unified perspective. To offer a holistic understanding ofthe state-of-the-art in these areas, we propose a unified taxonomy. Wecategorize existing representative SSL and UL with comprehensive and insightfulanalysis to highlight their design rationales in different learning scenariosand applications in different computer vision tasks. Lastly, we discuss theemerging trends and open challenges in SSL and UL to shed light on futurecritical research directions.<br
    • …
    corecore