38,425 research outputs found

    Deployment of a security assurance monitoring framework for telecommunication service infrastructures on a VoIP system

    Get PDF
    In today's world, where most of the critical infrastructures are based on distributed systems, security failures have become very common, even within large corporations. A system with security loopholes can be damaging for companies, both in terms of reputation and finances, while customers are reluctant to use such systems. In that respect, providing stakeholders with quantifiable evidences that the countermeasures deployed on the system are operating adequately is an important step towards better control of security failures for network administrators on one hand, and an increase in end users' trust in using these systems on the other. It is in that perspective that BUGYO, a methodology to assess the security of telecommunication networks and services in terms of assurance levels, was proposed to address the shortcomings of existing security assurance and risks management methodologies in measuring, documenting and maintaining security assurance of telecommunication services. In this paper, we provide an overview of the BUGYO methodology and we demonstrate its applicability (mainly with respect to the specification of assurance metrics) on a VoIP service infrastructure based on open source components

    Service Level Agreement-based GDPR Compliance and Security assurance in (multi)Cloud-based systems

    Get PDF
    Compliance with the new European General Data Protection Regulation (Regulation (EU) 2016/679) and security assurance are currently two major challenges of Cloud-based systems. GDPR compliance implies both privacy and security mechanisms definition, enforcement and control, including evidence collection. This paper presents a novel DevOps framework aimed at supporting Cloud consumers in designing, deploying and operating (multi)Cloud systems that include the necessary privacy and security controls for ensuring transparency to end-users, third parties in service provision (if any) and law enforcement authorities. The framework relies on the risk-driven specification at design time of privacy and security level objectives in the system Service Level Agreement (SLA) and in their continuous monitoring and enforcement at runtime.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644429 and No 780351, MUSA project and ENACT project, respectively. We would also like to acknowledge all the members of the MUSA Consortium and ENACT Consortium for their valuable help

    The case for cloud service trustmarks and assurance-as-a-service

    Get PDF
    Cloud computing represents a significant economic opportunity for Europe. However, this growth is threatened by adoption barriers largely related to trust. This position paper examines trust and confidence issues in cloud computing and advances a case for addressing them through the implementation of a novel trustmark scheme for cloud service providers. The proposed trustmark would be both active and dynamic featuring multi-modal information about the performance of the underlying cloud service. The trustmarks would be informed by live performance data from the cloud service provider, or ideally an independent third-party accountability and assurance service that would communicate up-to-date information relating to service performance and dependability. By combining assurance measures with a remediation scheme, cloud service providers could both signal dependability to customers and the wider marketplace and provide customers, auditors and regulators with a mechanism for determining accountability in the event of failure or non-compliance. As a result, the trustmarks would convey to consumers of cloud services and other stakeholders that strong assurance and accountability measures are in place for the service in question and thereby address trust and confidence issues in cloud computing

    Intangible trust requirements - how to fill the requirements trust "gap"?

    Get PDF
    Previous research efforts have been expended in terms of the capture and subsequent instantiation of "soft" trust requirements that relate to HCI usability concerns or in relation to "hard" tangible security requirements that primarily relate to security a ssurance and security protocols. Little direct focus has been paid to managing intangible trust related requirements per se. This 'gap' is perhaps most evident in the public B2C (Business to Consumer) E- Systems we all use on a daily basis. Some speculative suggestions are made as to how to fill the 'gap'. Visual card sorting is suggested as a suitable evaluative tool; whilst deontic logic trust norms and UML extended notation are the suggested (methodologically invariant) means by which software development teams can perhaps more fully capture hence visualize intangible trust requirements

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Machine-Readable Privacy Certificates for Services

    Full text link
    Privacy-aware processing of personal data on the web of services requires managing a number of issues arising both from the technical and the legal domain. Several approaches have been proposed to matching privacy requirements (on the clients side) and privacy guarantees (on the service provider side). Still, the assurance of effective data protection (when possible) relies on substantial human effort and exposes organizations to significant (non-)compliance risks. In this paper we put forward the idea that a privacy certification scheme producing and managing machine-readable artifacts in the form of privacy certificates can play an important role towards the solution of this problem. Digital privacy certificates represent the reasons why a privacy property holds for a service and describe the privacy measures supporting it. Also, privacy certificates can be used to automatically select services whose certificates match the client policies (privacy requirements). Our proposal relies on an evolution of the conceptual model developed in the Assert4Soa project and on a certificate format specifically tailored to represent privacy properties. To validate our approach, we present a worked-out instance showing how privacy property Retention-based unlinkability can be certified for a banking financial service.Comment: 20 pages, 6 figure
    corecore