4,525 research outputs found

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    MIPv6 Experimental Evaluation using Overlay Networks

    Get PDF
    The commercial deployment of Mobile IPv6 has been hastened by the concepts of Integrated Wireless Networks and Overlay Networks, which are present in the notion of the forthcoming generation of wireless communications. Individual wireless access networks show limitations that can be overcome through the integration of different technologies into a single unified platform (i.e., 4G systems). This paper summarises practical experiments performed to evaluate the impact of inter-networking (i.e. vertical handovers) on the Network and Transport layers. Based on our observations, we propose and evaluate a number of inter-technology handover optimisation techniques, e.g., Router Advertisements frequency values, Binding Update simulcasting, Router Advertisement caching, and Soft Handovers. The paper concludes with the description of a policy-based mobility support middleware (PROTON) that hides 4G networking complexities from mobile users, provides informed handover-related decisions, and enables the application of different vertical handover methods and optimisations according to context.Publicad

    Mobile Networking

    Get PDF
    We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad

    Towards a GNU/Linux IEEE 802.21 Implementation

    Get PDF
    Abstract-Multiaccess mobile devices and overlapping wireless network deployments have emerged as a next generation network fixture. To make the most of all available networks, mobile devices should be capable of handing over between heterogeneous networks seamlessly and automatically. At the same time, operators should be able to steer network attachment based on their criteria. Although several cross layer mechanisms have been proposed in recent years, only the Media Independent Handover (MIH) Services framework has advanced in any of the established standardization bodies. This paper presents a blueprint for a GNU/Linux implementation of IEEE 802.21. We review the salient points of the standard, introduce our software implementation architecture, detail information gathering in GNU/Linux, and show how our prototype implementation can be used in practice. In contrast with prior published work, this paper presents a real IEEE 802.21 implementation, not an abstracted or reduced MIH-like framework, tested and empirically evaluated over real heterogeneous networks

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    Regressive Prediction Approach to Vertical Handover in Fourth Generation Wireless Networks

    Get PDF
    The over increasing demand for deployment of wireless access networks has made wireless mobile devices to face so many challenges in choosing the best suitable network from a set of available access networks. Some of the weighty issues in 4G wireless networks are fastness and seamlessness in handover process. This paper therefore, proposes a handover technique based on movement prediction in wireless mobile (WiMAX and LTE-A) environment. The technique enables the system to predict signal quality between the UE and Radio Base Stations (RBS)/Access Points (APs) in two different networks. Prediction is achieved by employing the Markov Decision Process Model (MDPM) where the movement of the UE is dynamically estimated and averaged to keep track of the signal strength of mobile users. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The performances of various handover approaches influenced by different metrics (mobility velocities) were evaluated. The results presented demonstrate good accuracy the proposed method was able to achieve in predicting the next signal level by reducing the total handover latency
    • 

    corecore