15,783 research outputs found

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Multimodal interactions in insect navigation

    Get PDF
    Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Visual object tracking performance measures revisited

    Get PDF
    The problem of visual tracking evaluation is sporting a large variety of performance measures, and largely suffers from lack of consensus about which measures should be used in experiments. This makes the cross-paper tracker comparison difficult. Furthermore, as some measures may be less effective than others, the tracking results may be skewed or biased towards particular tracking aspects. In this paper we revisit the popular performance measures and tracker performance visualizations and analyze them theoretically and experimentally. We show that several measures are equivalent from the point of information they provide for tracker comparison and, crucially, that some are more brittle than the others. Based on our analysis we narrow down the set of potential measures to only two complementary ones, describing accuracy and robustness, thus pushing towards homogenization of the tracker evaluation methodology. These two measures can be intuitively interpreted and visualized and have been employed by the recent Visual Object Tracking (VOT) challenges as the foundation for the evaluation methodology

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies

    Towards an Interactive Humanoid Companion with Visual Tracking Modalities

    Get PDF
    The idea of robots acting as human companions is not a particularly new or original one. Since the notion of “robot ” was created, the idea of robots replacing humans in dangerous, dirty and dull activities has been inseparably tied with the fantasy of human-like robots being friends and existing side by side with humans. In 1989, Engelberger (Engelberger
    • 

    corecore