765 research outputs found

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Dynamaid, čovjekoliki robot za istraživanje uslužnih djelatnosti u kućanstvima

    Get PDF
    Domestic tasks require three main skills from autonomous robots: robust navigation, object manipulation, and intuitive communication with the users. Most robot platforms, however, support only one or two of the above skills. In this paper we present Dynamaid, a robot platform for research on domestic service applications. For robust navigation, Dynamaid has a base with four individually steerable differential wheel pairs, which allow omnidirectional motion. For mobile manipulation, Dynamaid is additionally equipped with two anthropomorphic arms that include a gripper, and with a trunk that can be lifted as well as twisted. For intuitive multimodal communication, the robot has a microphone, stereo cameras, and a movable head. Its humanoid upper body supports natural interaction. It can perceive persons in its environment, recognize and synthesize speech. We developed software for the tests of the RoboCup@Home competitions, which serve as benchmarks for domestic service robots. With Dynamaid and our communication robot Robotinho, our team Nimbro@Home took part in the RoboCup German Open 2009 and RoboCup 2009 competitions in which we came in second and third, respectively. We also won the innovation award for innovative robot design, empathic behaviors, and robot-robot cooperation.Tri glavne vještine koje se nameću autonomnim robotima pri obavljanju kućanskih zadataka su: robusna navigacija, manipulacija objektima te intuitivna komunikacija s korisnicima. Većina robotskih platformi podržava samo jednu ili dvije od navedenih vještina. U ovome se članku predstavlja robotska platforma Dynamaid za istraživanje uslužnih djelatnosti u kućanstvima. U svrhu robusne navigacije, Dynamaid ima bazu s četiri zasebno upravljiva diferencijalna pogona, što omogućava svesmjerno gibanje. U svrhu manipulacije, Dynamaid je dodatno opremljen s dvije antropomorfne robotske ruke s hvataljkom te tijelom koje se može zakretati i dizati. Za intuitivnu višenamjensku komunikaciju, robot sadrži mikrofon, stereo kameru te pokretnu glavu. Njegovo čovjekoliko tijelo podržava prirodnu interakciju. Robot ima sposobnost uočavanja ljudi u svom okruženju, prepoznavanja i sinteze govora. Razvijen je software za sudjelovanje na RoboCup@Home natjecanjima, koja služe kao referenta mjera za kućanske uslužne robote. Naša grupa, Nimbro@Home, sudjelovala je s Dynamaidom i našim robotom za komunikaciju, Robotinhom, na natjecanjima RoboCup German Open 2009 i RoboCup 2009, gdje smo osvojili drugo i treće mjesto. Također smo dobili nagradu za inovativan dizajn robota, empatičko ponašanje te robot-robot suradnju

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    RoboCup@Home: Analysis and results of evolving competitions for domestic and service robots

    Get PDF
    Scientific competitions are becoming more common in many research areas of artificial intelligence and robotics, since they provide a shared testbed for comparing different solutions and enable the exchange of research results. Moreover, they are interesting for general audiences and industries. Currently, many major research areas in artificial intelligence and robotics are organizing multiple-year competitions that are typically associated with scientific conferences. One important aspect of such competitions is that they are organized for many years. This introduces a temporal evolution that is interesting to analyze. However, the problem of evaluating a competition over many years remains unaddressed. We believe that this issue is critical to properly fuel changes over the years and measure the results of these decisions. Therefore, this article focuses on the analysis and the results of evolving competitions. In this article, we present the RoboCup@Home competition, which is the largest worldwide competition for domestic service robots, and evaluate its progress over the past seven years. We show how the definition of a proper scoring system allows for desired functionalities to be related to tasks and how the resulting analysis fuels subsequent changes to achieve general and robust solutions implemented by the teams. Our results show not only the steadily increasing complexity of the tasks that RoboCup@Home robots can solve but also the increased performance for all of the functionalities addressed in the competition. We believe that the methodology used in RoboCup@Home for evaluating competition advances and for stimulating changes can be applied and extended to other robotic competitions as well as to multi-year research projects involving Artificial Intelligence and Robotics

    Robotics for social welfare

    Get PDF
    Supported by developments in the field of social robotics, virtual worlds and ICT tools it is possible to build new solutions in health and welfare. Two projects are described in this article. They are intended to improve efficiency and quality of current therapeutic procedures. The ESTIMULO project improves emotional and cognitive status of people with dementia using a reactive pet-robot. The ELDERTOY project modifies the classical concept from the toy industry to develop a new solution for the aged people. ELDERTOY involves a double purpose, fun and therapeutic. In a complementary way, these projects aim to be an example of the breaking of the technology gap both of seniors and of people with disabilities. Therefore, the ultimate goal is to promote and adapt scientific and technological knowledge to be applied to improve significantly the standard of quality of life in society

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Supporting active and healthy aging with advanced robotics integrated in smart environment

    Get PDF
    The technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is the integration of service robotics for optimising social services and improving quality of life of the elderly population. This chapter aims to underline the barriers of the state of the art, furthermore the authors present their concrete experiences to overcome these barriers gained at the RoboTown Living Lab of Scuola Superiore Sant'Anna within past and current projects. They analyse and discuss the results in order to give recommendations based on their experiences. Furthermore, this work highlights the trend of development from stand-alone solutions to cloud computing architecture, describing the future research directions

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development
    corecore