852 research outputs found

    A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images

    Get PDF
    Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Framework for progressive segmentation of chest radiograph for efficient diagnosis of inert regions

    Get PDF
    Segmentation is one of the most essential steps required to identify the inert object in the chest x-ray. A review with the existing segmentation techniques towards chest x-ray as well as other vital organs was performed. The main objective was to find whether existing system offers accuracy at the cost of recursive and complex operations. The proposed system contributes to introduce a framework that can offer a good balance between computational performance and segmentation performance. Given an input of chest x-ray, the system offers progressive search for similar image on the basis of similarity score with queried image. Region-based shape descriptor is applied for extracting the feature exclusively for identifying the lung region from the thoracic region followed by contour adjustment. The final segmentation outcome shows accurate identification followed by segmentation of apical and costophrenic region of lung. Comparative analysis proved that proposed system offers better segmentation performance in contrast to existing system

    A multi-stage GAN for multi-organ chest X-ray image generation and segmentation

    Full text link
    Multi-organ segmentation of X-ray images is of fundamental importance for computer aided diagnosis systems. However, the most advanced semantic segmentation methods rely on deep learning and require a huge amount of labeled images, which are rarely available due to both the high cost of human resources and the time required for labeling. In this paper, we present a novel multi-stage generation algorithm based on Generative Adversarial Networks (GANs) that can produce synthetic images along with their semantic labels and can be used for data augmentation. The main feature of the method is that, unlike other approaches, generation occurs in several stages, which simplifies the procedure and allows it to be used on very small datasets. The method has been evaluated on the segmentation of chest radiographic images, showing promising results. The multistage approach achieves state-of-the-art and, when very few images are used to train the GANs, outperforms the corresponding single-stage approach

    Image Features for Tuberculosis Classification in Digital Chest Radiographs

    Get PDF
    Tuberculosis (TB) is a respiratory disease which affects millions of people each year, accounting for the tenth leading cause of death worldwide, and is especially prevalent in underdeveloped regions where access to adequate medical care may be limited. Analysis of digital chest radiographs (CXRs) is a common and inexpensive method for the diagnosis of TB; however, a trained radiologist is required to interpret the results, and is subject to human error. Computer-Aided Detection (CAD) systems are a promising machine-learning based solution to automate the diagnosis of TB from CXR images. As the dimensionality of a high-resolution CXR image is very large, image features are used to describe the CXR image in a lower dimension while preserving the elements in the CXR necessary for the detection of TB. In this thesis, I present a set of image features using Pyramid Histogram of Oriented Gradients, Local Binary Patterns, and Principal Component Analysis which provides high classifier performance on two publicly available CXR datasets, and compare my results to current state-of-the-art research

    Medical Image Segmentation by Deep Convolutional Neural Networks

    Get PDF
    Medical image segmentation is a fundamental and critical step for medical image analysis. Due to the complexity and diversity of medical images, the segmentation of medical images continues to be a challenging problem. Recently, deep learning techniques, especially Convolution Neural Networks (CNNs) have received extensive research and achieve great success in many vision tasks. Specifically, with the advent of Fully Convolutional Networks (FCNs), automatic medical image segmentation based on FCNs is a promising research field. This thesis focuses on two medical image segmentation tasks: lung segmentation in chest X-ray images and nuclei segmentation in histopathological images. For the lung segmentation task, we investigate several FCNs that have been successful in semantic and medical image segmentation. We evaluate the performance of these different FCNs on three publicly available chest X-ray image datasets. For the nuclei segmentation task, since the challenges of this task are difficulty in segmenting the small, overlapping and touching nuclei, and limited ability of generalization to nuclei in different organs and tissue types, we propose a novel nuclei segmentation approach based on a two-stage learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step. To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively merging features across different levels. We evaluate our proposed method on two public diverse nuclei datasets. The experimental results show that our proposed approach outperforms many standard segmentation architectures and recently proposed nuclei segmentation methods, and can be easily generalized across different cell types in various organs
    • …
    corecore