10,639 research outputs found

    Negative Statements Considered Useful

    No full text
    Knowledge bases (KBs), pragmatic collections of knowledge about notable entities, are an important asset in applications such as search, question answering and dialogue. Rooted in a long tradition in knowledge representation, all popular KBs only store positive information, while they abstain from taking any stance towards statements not contained in them. In this paper, we make the case for explicitly stating interesting statements which are not true. Negative statements would be important to overcome current limitations of question answering, yet due to their potential abundance, any effort towards compiling them needs a tight coupling with ranking. We introduce two approaches towards compiling negative statements. (i) In peer-based statistical inferences, we compare entities with highly related entities in order to derive potential negative statements, which we then rank using supervised and unsupervised features. (ii) In query-log-based text extraction, we use a pattern-based approach for harvesting search engine query logs. Experimental results show that both approaches hold promising and complementary potential. Along with this paper, we publish the first datasets on interesting negative information, containing over 1.1M statements for 100K popular Wikidata entities

    PubMed and Beyond: Recent Advances and Best Practices in Biomedical Literature Search

    Full text link
    Biomedical research yields a wealth of information, much of which is only accessible through the literature. Consequently, literature search is an essential tool for building on prior knowledge in clinical and biomedical research. Although recent improvements in artificial intelligence have expanded functionality beyond keyword-based search, these advances may be unfamiliar to clinicians and researchers. In response, we present a survey of literature search tools tailored to both general and specific information needs in biomedicine, with the objective of helping readers efficiently fulfill their information needs. We first examine the widely used PubMed search engine, discussing recent improvements and continued challenges. We then describe literature search tools catering to five specific information needs: 1. Identifying high-quality clinical research for evidence-based medicine. 2. Retrieving gene-related information for precision medicine and genomics. 3. Searching by meaning, including natural language questions. 4. Locating related articles with literature recommendation. 5. Mining literature to discover associations between concepts such as diseases and genetic variants. Additionally, we cover practical considerations and best practices for choosing and using these tools. Finally, we provide a perspective on the future of literature search engines, considering recent breakthroughs in large language models such as ChatGPT. In summary, our survey provides a comprehensive view of biomedical literature search functionalities with 36 publicly available tools.Comment: 27 pages, 6 figures, 36 tool

    Clinfo.ai: An Open-Source Retrieval-Augmented Large Language Model System for Answering Medical Questions using Scientific Literature

    Full text link
    The quickly-expanding nature of published medical literature makes it challenging for clinicians and researchers to keep up with and summarize recent, relevant findings in a timely manner. While several closed-source summarization tools based on large language models (LLMs) now exist, rigorous and systematic evaluations of their outputs are lacking. Furthermore, there is a paucity of high-quality datasets and appropriate benchmark tasks with which to evaluate these tools. We address these issues with four contributions: we release Clinfo.ai, an open-source WebApp that answers clinical questions based on dynamically retrieved scientific literature; we specify an information retrieval and abstractive summarization task to evaluate the performance of such retrieval-augmented LLM systems; we release a dataset of 200 questions and corresponding answers derived from published systematic reviews, which we name PubMed Retrieval and Synthesis (PubMedRS-200); and report benchmark results for Clinfo.ai and other publicly available OpenQA systems on PubMedRS-200.Comment: Preprint of an article published in Pacific Symposium on Biocomputing copyright 2024 World Scientific Publishing Co., Singapore, http://psb.stanford.edu

    Attention-based Aspect Reasoning for Knowledge Base Question Answering on Clinical Notes

    Full text link
    Question Answering (QA) in clinical notes has gained a lot of attention in the past few years. Existing machine reading comprehension approaches in clinical domain can only handle questions about a single block of clinical texts and fail to retrieve information about multiple patients and their clinical notes. To handle more complex questions, we aim at creating knowledge base from clinical notes to link different patients and clinical notes, and performing knowledge base question answering (KBQA). Based on the expert annotations available in the n2c2 dataset, we first created the ClinicalKBQA dataset that includes around 9K QA pairs and covers questions about seven medical topics using more than 300 question templates. Then, we investigated an attention-based aspect reasoning (AAR) method for KBQA and analyzed the impact of different aspects of answers (e.g., entity, type, path, and context) for prediction. The AAR method achieves better performance due to the well-designed encoder and attention mechanism. From our experiments, we find that both aspects, type and path, enable the model to identify answers satisfying the general conditions and produce lower precision and higher recall. On the other hand, the aspects, entity and context, limit the answers by node-specific information and lead to higher precision and lower recall.Comment: Accepted to ACM BCB 202

    Automated Question-Answering for Interactive Decision Support in Operations & Maintenance of Wind Turbines

    Get PDF
    Intelligent question-answering (QA) systems have witnessed increased interest in recent years, particularly in their ability to facilitate information access, data interpretation or decision support. The wind energy sector is one of the most promising sources of renewable energy, yet turbines regularly suffer from failures and operational inconsistencies, leading to downtimes and significant maintenance costs. Addressing these issues requires rapid interpretation of complex and dynamic data patterns under time-critical conditions. In this article, we present a novel approach that leverages interactive, natural language-based decision support for operations & maintenance (O&M) of wind turbines. The proposed interactive QA system allows engineers to pose domain-specific questions in natural language, and provides answers (in natural language) based on the automated retrieval of information on turbine sub-components, their properties and interactions, from a bespoke domain-specific knowledge graph. As data for specific faults is often sparse, we propose the use of paraphrase generation as a way to augment the existing dataset. Our QA system leverages encoder-decoder models to generate Cypher queries to obtain domain-specific facts from the KG database in response to user-posed natural language questions. Experiments with an attention-based sequence-to-sequence (Seq2Seq) model and a transformer show that the transformer accurately predicts up to 89.75% of responses to input questions, outperforming the Seq2Seq model marginally by 0.76%, though being 9.46 times more computationally efficient. The proposed QA system can help support engineers and technicians during O&M to reduce turbine downtime and operational costs, thus improving the reliability of wind energy as a source of renewable energy

    Answering PICO Clinical Questions: a Semantic Graph-Based Approach

    Get PDF
    International audienceIn this paper, we tackle the issue related to the retrieval of the best evidence that fits with a PICO (Population, Intervention, Comparison and Outcome) question. We propose a new document ranking algorithm that relies on semantic based query expansion bounded by the local search context to better discard irrelevant documents. Experiments using a standard dataset including 423 PICO questions and more than 1,2 million of documents, show that our aproach is promising

    Collecting Data from Children Ages 9-13

    Get PDF
    Provides a summary of literature on common methods used to collect data, such as diaries, interviews, observational methods, and surveys. Analyzes age group-specific considerations, advantages, and drawbacks, with tips for improving data quality
    • …
    corecore