13,962 research outputs found

    The future of laboratory medicine - A 2014 perspective.

    Get PDF
    Predicting the future is a difficult task. Not surprisingly, there are many examples and assumptions that have proved to be wrong. This review surveys the many predictions, beginning in 1887, about the future of laboratory medicine and its sub-specialties such as clinical chemistry and molecular pathology. It provides a commentary on the accuracy of the predictions and offers opinions on emerging technologies, economic factors and social developments that may play a role in shaping the future of laboratory medicine

    Applications of aerospace technology in the public sector

    Get PDF
    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface

    Methods for autonomous wristband placement with a search-and-rescue aerial manipulator

    Get PDF
    A new robotic system for Search And Rescue (SAR) operations based on the automatic wristband placement on the victims’ arm, which may provide identification, beaconing and remote sensor readings for continuous health monitoring. This paper focuses on the development of the automatic target localization and the device placement using an unmanned aerial manipulator. The automatic wrist detection and localization system uses an RGB-D camera and a convolutional neural network based on the region faster method (Faster R-CNN). A lightweight parallel delta manipulator with a large workspace has been built, and a new design of a wristband in the form of a passive detachable gripper, is presented, which under contact, automatically attaches to the human, while disengages from the manipulator. A new trajectory planning method has been used to minimize the torques caused by the external forces during contact, which cause attitude perturbations. Experiments have been done to evaluate the machine learning method for detection and location, and for the assessment of the performance of the trajectory planning method. The results show how the VGG-16 neural network provides a detection accuracy of 67.99%. Moreover, simulation experiments have been done to show that the new trajectories minimize the perturbations to the aerial platform.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Assessment of Domestic Well-Being: From Perception to Measurement

    Get PDF
    Nowadays, there are plenty of sensing devices that enable the measurement of physiological, environmental, and behavioral parameters of people 24 hours a day, seven days a week and provide huge quantities of different data. Data and signals coming from sensing devices, installed in indoor or outdoor environments or often worn by the users, generate heterogeneous and complex structured datasets, most of the time not uniformly structured. The artificial intelligence (AI) algorithms applied to these sets of data have demonstrated capabilities to infer indices related to a subject's status and well-being [1]. Well-being is a key parameter in the World Health Organization (WHO) definition of health, considering its physical, mental, and social spheres. Quantitatively assessing a subject's well-being is of paramount importance if we want to assess the whole status of a person, which is particularly useful in the case of ageing people living alone. Assessment allows for continuous remote monitoring to improve people's quality of life (QoL) according to their perceptions, needs, and preferences. Technology undoubtedly plays a pivotal role in this regard, providing us new tools to support the objective evaluation of a subject's status, including her/his perception of the living environment. Its potential is huge, also in terms of support to the healthcare system and ageing people; however, there are several engineering challenges to consider, especially in terms of sensors integrability, connectivity, and metrological performance, in order to obtain reliable and accurate measurement systems

    An overview of current approaches and future challenges in physiological monitoring

    Get PDF
    Sufficient evidence exists from laboratory studies to suggest that physiological measures can be useful as an adjunct to behavioral and subjective measures of human performance and capabilities. Thus it is reasonable to address the conceptual and engineering challenges that arise in applying this technology in operational settings. Issues reviewed include the advantages and disadvantages of constructs such as mental states, the need for physiological measures of performance, areas of application for physiological measures in operational settings, which measures appear to be most useful, problem areas that arise in the use of these measures in operational settings, and directions for future development
    • 

    corecore