1,203 research outputs found

    Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems

    Get PDF
    Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has attracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this article, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms

    Battery Recharging Time Models for Reconfigurable Intelligent Surface-Assisted Wireless Power Transfer Systems

    Get PDF
    In this paper, we develop an analytical framework for the statistical analysis of the battery recharging time (BRT) in reconfigurable intelligent surfaces (RISs) aided wireless power transfer (WPT) systems. Specifically, we derive novel closed-form expressions for the probability density function (PDF), cumulative distribution function, and moments of the BRT of the radio frequency energy harvesting wireless nodes. Moreover, closed-form expressions of the the PDF of the BRT is obtained for two special cases: i) when the RIS is equipped with one reflecting element (RE), ii) when the RIS consists of a large number of REs. Capitalizing on the derived expressions, we offer a comprehensive treatment for the statistical characterization of the BRT and study the impact of the system and battery parameters on its performance. Our results reveal that the proposed statistical models are analytically tractable, accurate, and efficient in assessing the sustainability of RIS-assisted WPT networks and in providing key design insights for large-scale future wireless applications. For example, we demonstrate that a 4-fold reduction in the mean time of the BRT can be achieved by doubling the number of RIS elements. Monte Carlo simulation results corroborate the accuracy of the proposed theoretical framework

    IRS-aided UAV for Future Wireless Communications: A Survey and Research Opportunities

    Full text link
    Both unmanned aerial vehicles (UAVs) and intelligent reflecting surfaces (IRS) are gaining traction as transformative technologies for upcoming wireless networks. The IRS-aided UAV communication, which introduces IRSs into UAV communications, has emerged in an effort to improve the system performance while also overcoming UAV communication constraints and issues. The purpose of this paper is to provide a comprehensive overview of IRSassisted UAV communications. First, we provide five examples of how IRSs and UAVs can be combined to achieve unrivaled potential in difficult situations. The technological features of the most recent relevant researches on IRS-aided UAV communications from the perspective of the main performance criteria, i.e., energy efficiency, security, spectral efficiency, etc. Additionally, previous research studies on technology adoption as machine learning algorithms. Lastly, some promising research directions and open challenges for IRS-aided UAV communication are presented
    corecore