129,725 research outputs found

    Hydra: An Accelerator for Real-Time Edge-Aware Permeability Filtering in 65nm CMOS

    Full text link
    Many modern video processing pipelines rely on edge-aware (EA) filtering methods. However, recent high-quality methods are challenging to run in real-time on embedded hardware due to their computational load. To this end, we propose an area-efficient and real-time capable hardware implementation of a high quality EA method. In particular, we focus on the recently proposed permeability filter (PF) that delivers promising quality and performance in the domains of HDR tone mapping, disparity and optical flow estimation. We present an efficient hardware accelerator that implements a tiled variant of the PF with low on-chip memory requirements and a significantly reduced external memory bandwidth (6.4x w.r.t. the non-tiled PF). The design has been taped out in 65 nm CMOS technology, is able to filter 720p grayscale video at 24.8 Hz and achieves a high compute density of 6.7 GFLOPS/mm2 (12x higher than embedded GPUs when scaled to the same technology node). The low area and bandwidth requirements make the accelerator highly suitable for integration into SoCs where silicon area budget is constrained and external memory is typically a heavily contended resource

    Unsupervised Deep Single-Image Intrinsic Decomposition using Illumination-Varying Image Sequences

    Full text link
    Machine learning based Single Image Intrinsic Decomposition (SIID) methods decompose a captured scene into its albedo and shading images by using the knowledge of a large set of known and realistic ground truth decompositions. Collecting and annotating such a dataset is an approach that cannot scale to sufficient variety and realism. We free ourselves from this limitation by training on unannotated images. Our method leverages the observation that two images of the same scene but with different lighting provide useful information on their intrinsic properties: by definition, albedo is invariant to lighting conditions, and cross-combining the estimated albedo of a first image with the estimated shading of a second one should lead back to the second one's input image. We transcribe this relationship into a siamese training scheme for a deep convolutional neural network that decomposes a single image into albedo and shading. The siamese setting allows us to introduce a new loss function including such cross-combinations, and to train solely on (time-lapse) images, discarding the need for any ground truth annotations. As a result, our method has the good properties of i) taking advantage of the time-varying information of image sequences in the (pre-computed) training step, ii) not requiring ground truth data to train on, and iii) being able to decompose single images of unseen scenes at runtime. To demonstrate and evaluate our work, we additionally propose a new rendered dataset containing illumination-varying scenes and a set of quantitative metrics to evaluate SIID algorithms. Despite its unsupervised nature, our results compete with state of the art methods, including supervised and non data-driven methods.Comment: To appear in Pacific Graphics 201

    Evaluation of Psychoacoustic Sound Parameters for Sonification

    Get PDF
    Sonification designers have little theory or experimental evidence to guide the design of data-to-sound mappings. Many mappings use acoustic representations of data values which do not correspond with the listener's perception of how that data value should sound during sonification. This research evaluates data-to-sound mappings that are based on psychoacoustic sensations, in an attempt to move towards using data-to-sound mappings that are aligned with the listener's perception of the data value's auditory connotations. Multiple psychoacoustic parameters were evaluated over two experiments, which were designed in the context of a domain-specific problem - detecting the level of focus of an astronomical image through auditory display. Recommendations for designing sonification systems with psychoacoustic sound parameters are presented based on our results

    The effect of interstimulus interval on sequential effects in absolute identification

    Get PDF
    In absolute identification experiments, the participant is asked to identify stimuli drawn from a small set of items which differ on a single physical dimension (e.g., 10 tones which vary in frequency). Responses in these tasks show a striking pattern of sequential dependencies: The current response assimilates towards the immediately preceding stimulus but contrasts with the stimuli further back in the sequence. This pattern has been variously interpreted as resulting from confusion of items in memory, shifts in response criteria, or the action of selective attention, and these interpretations have been incorporated into competing formal models of absolute identification performance. In two experiments, we demonstrate that lengthening the time between trials increases contrast to both the previous stimulus and the stimulus two trials back. This surprising pattern of results is difficult to reconcile with the idea that sequential dependencies result from memory confusion or from criterion shifts, but is consistent with an account that emphasizes selective attention. </jats:p

    Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification

    Get PDF
    The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201

    mFish Alpha Pilot: Building a Roadmap for Effective Mobile Technology to Sustain Fisheries and Improve Fisher Livelihoods.

    Get PDF
    In June 2014 at the Our Ocean Conference in Washington, DC, United States Secretary of State John Kerry announced the ambitious goal of ending overfishing by 2020. To support that goal, the Secretary's Office of Global Partnerships launched mFish, a public-private partnership to harness the power of mobile technology to improve fisher livelihoods and increase the sustainability of fisheries around the world. The US Department of State provided a grant to 50in10 to create a pilot of mFish that would allow for the identification of behaviors and incentives that might drive more fishers to adopt novel technology. In May 2015 50in10 and Future of Fish designed a pilot to evaluate how to improve adoption of a new mobile technology platform aimed at improving fisheries data capture and fisher livelihoods. Full report
    • 

    corecore