971 research outputs found

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    The multi-modal interface of Robot-Era multi-robot services tailored for the elderly

    Get PDF
    Socially assistive robotic platforms are now a realistic option for the long-term care of ageing populations. Elderly users may benefit from many services provided by robots operating in different environments, such as providing assistance inside apartments, serving in shared facilities of buildings or guiding people outdoors. In this paper, we present the experience gained within the EU FP7 ROBOT-ERA project towards the objective of implementing easy-to-use and acceptable service robotic system for the elderly. In particular, we detail the user-centred design and the experimental evaluation in realistic environments of a web-based multi-modal user interface tailored for elderly users of near future multi-robot services. Experimental results demonstrate positive evaluation of usability and willingness to use by elderly users, especially those less experienced with technological devices who could benefit more from the adoption of robotic services. Further analyses showed how multi-modal modes of interaction support more flexible and natural elderly–robot interaction, make clear the benefits for the users and, therefore, increase its acceptability. Finally, we provide insights and lessons learned from the extensive experimentation, which, to the best of our knowledge, is one of the largest experimentation of a multi-robot multi-service system so far

    Development of a Socially Believable Multi-Robot Solution from Town to Home

    Get PDF
    Technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is that they have to be socially acceptable and believable to the end-users. This paper aimed to present some technological aspects that have been faced to develop the Robot-Era system, a multi-robotic system that is able to act in a socially believable way in the environments daily inhabited by humans, such as urban areas, buildings and homes. In particular, this paper focuses on two services—shopping delivery and garbage collection—showing preliminary results on experiments conducted with 35 elderly people. The analysis adopts an end-user-oriented perspective, considering some of the main attributes of acceptability: usability, attitude, anxiety, trust and quality of life

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Suitable task allocation in intelligent systems for assistive environments

    Get PDF
    The growing need of technological assistance to provide support to people with special needs demands for systems more and more efficient and with better performances. With this aim, this work tries to advance in a multirobot platform that allows the coordinated control of different agents and other elements in the environment to achieve an autonomous behavior based on the user’s needs or will. Therefore, this environment is structured according to the potentiality of each agent and elements of this environment and of the dynamic context, to generate the adequate actuation plans and the coordination of their execution.Peer ReviewedPostprint (author's final draft

    Perception Framework for Activities of Daily Living Manipulation Tasks

    Get PDF
    There is an increasing concern in tackling the problems faced by the elderly community and physically in-locked people to lead an independent life experience problems with self- care. The need for developing service robots that can help people with mobility impairments is hence very essential. Developing a control framework for shared human-robot autonomy will allow locked-in individuals to perform the Activities of Daily Living (ADL) in a exible way. The relevant ADL scenarios were identi ed as handling objects, self-feeding, and opening doors for indoor nav- igation assistance. Multiple experiments were conducted, which demonstrates that the robot executes these daily living tasks reliably without requiring adjustment to the environment. The indoor manipulation tasks hold the challenge of dealing with a wide range of unknown objects. This thesis presents a framework developed for grasping without requiring a priori knowledge of the objects being manipulated. A successful manipulation task requires the combination of aspects such as envi- ronment modeling, object detection with pose estimation, grasp planning, motion planning followed by an e?cient grasp execution, which is validated by a 6+2 Degree of Freedom robotic manipulator
    corecore