7,778 research outputs found

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Pushing AI to Wireless Network Edge: An Overview on Integrated Sensing, Communication, and Computation towards 6G

    Full text link
    Pushing artificial intelligence (AI) from central cloud to network edge has reached board consensus in both industry and academia for materializing the vision of artificial intelligence of things (AIoT) in the sixth-generation (6G) era. This gives rise to an emerging research area known as edge intelligence, which concerns the distillation of human-like intelligence from the huge amount of data scattered at wireless network edge. In general, realizing edge intelligence corresponds to the process of sensing, communication, and computation, which are coupled ingredients for data generation, exchanging, and processing, respectively. However, conventional wireless networks design the sensing, communication, and computation separately in a task-agnostic manner, which encounters difficulties in accommodating the stringent demands of ultra-low latency, ultra-high reliability, and high capacity in emerging AI applications such as auto-driving. This thus prompts a new design paradigm of seamless integrated sensing, communication, and computation (ISCC) in a task-oriented manner, which comprehensively accounts for the use of the data in the downstream AI applications. In view of its growing interest, this article provides a timely overview of ISCC for edge intelligence by introducing its basic concept, design challenges, and enabling techniques, surveying the state-of-the-art development, and shedding light on the road ahead

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    • …
    corecore