3,003 research outputs found

    Efficient Location Privacy In Mobile Applications

    Full text link
    Location awareness is an essential part of today\u27s mobile devices. It is a well-established technology that offers significant benefits to mobile users. While location awareness has triggered the exponential growth of mobile computing, it has also introduced new privacy threats due to frequent location disclosures. Movement patterns could be used to identify individuals and also leak sensitive information about them, such as health condition, lifestyle, political/religious affiliations, etc. In this dissertation we address location privacy in the context of mobile applications. First we look into location privacy in the context of Dynamic Spectrum Access (DSA) technology. DSA is a promising framework for mitigating the spectrum shortage caused by fixed spectrum allocation policies. In particular, DSA allows license-exempt users to access the licensed spectrum bands when not in use by their respective owners. Here, we focus on the database-driven DSA model, where mobile users issue location-based queries to a white-space database in order to identify idle channels in their area. We present a number of efficient protocols that allow users to retrieve channel availability information from the white-space database while maintaining their location secret. In the second part of the dissertation we look into location privacy in the context of location-aware mobile advertising. Location-aware mobile advertising is expanding very rapidly and is forecast to grow much faster than any other industry in the digital era. Unfortunately, with the rise and expansion of online behavioral advertising, consumers have grown very skeptical of the vast amount of data that is extracted and mined from advertisers today. As a result, the consensus has shifted towards stricter privacy requirements. Clearly, there exists an innate conflict between privacy and advertisement, yet existing advertising practices rely heavily on non-disclosure agreements and policy enforcement rather than computational privacy guarantees. In the second half of this dissertation, we present a novel privacy-preserving location-aware mobile advertisement framework that is built with privacy in mind from the ground up. The framework consists of several methods which ease the tension that exists between privacy and advertising by guaranteeing, through cryptographic constructions, that (i) mobile users receive advertisements relative to their location and interests in a privacy-preserving manner, and (ii) the advertisement network can only compute aggregate statistics of ad impressions and click-through-rates. Through extensive experimentation, we show that our methods are efficient in terms of both computational and communication cost, especially at the client side

    Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors

    Full text link
    Device fingerprinting combined with Machine and Deep Learning (ML/DL) report promising performance when detecting cyberattacks targeting data managed by resource-constrained spectrum sensors. However, the amount of data needed to train models and the privacy concerns of such scenarios limit the applicability of centralized ML/DL-based approaches. Federated learning (FL) addresses these limitations by creating federated and privacy-preserving models. However, FL is vulnerable to malicious participants, and the impact of adversarial attacks on federated models detecting spectrum sensing data falsification (SSDF) attacks on spectrum sensors has not been studied. To address this challenge, the first contribution of this work is the creation of a novel dataset suitable for FL and modeling the behavior (usage of CPU, memory, or file system, among others) of resource-constrained spectrum sensors affected by different SSDF attacks. The second contribution is a pool of experiments analyzing and comparing the robustness of federated models according to i) three families of spectrum sensors, ii) eight SSDF attacks, iii) four scenarios dealing with unsupervised (anomaly detection) and supervised (binary classification) federated models, iv) up to 33% of malicious participants implementing data and model poisoning attacks, and v) four aggregation functions acting as anti-adversarial mechanisms to increase the models robustness

    Studying the Robustness of Anti-Adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors

    Full text link
    Device fingerprinting combined with Machine and Deep Learning (ML/DL) report promising performance when detecting spectrum sensing data falsification (SSDF) attacks. However, the amount of data needed to train models and the scenario privacy concerns limit the applicability of centralized ML/DL. Federated learning (FL) addresses these drawbacks but is vulnerable to adversarial participants and attacks. The literature has proposed countermeasures, but more effort is required to evaluate the performance of FL detecting SSDF attacks and their robustness against adversaries. Thus, the first contribution of this work is to create an FL-oriented dataset modeling the behavior of resource-constrained spectrum sensors affected by SSDF attacks. The second contribution is a pool of experiments analyzing the robustness of FL models according to i) three families of sensors, ii) eight SSDF attacks, iii) four FL scenarios dealing with anomaly detection and binary classification, iv) up to 33% of participants implementing data and model poisoning attacks, and v) four aggregation functions acting as anti-adversarial mechanisms. In conclusion, FL achieves promising performance when detecting SSDF attacks. Without anti-adversarial mechanisms, FL models are particularly vulnerable with > 16% of adversaries. Coordinate-wise-median is the best mitigation for anomaly detection, but binary classifiers are still affected with > 33% of adversaries
    • 

    corecore