5,489 research outputs found

    Towards Predicting Cyber Attacks Using Information Exchange and Data Mining

    Get PDF
    In this paper, we present an empirical evaluation of an approach to predict attacker's activities based on information exchange and data mining. We gathered the cyber security alerts shared within the SABU platform, in which around 220,000 alerts from heterogeneous geographically distributed sensors (intrusion detection systems and honeypots) are shared every day. Subsequently, we used the methods of sequential rule mining to identify common attack patterns and to derive rules for predicting attacks. As we illustrate in this paper, a collaborative environment allows attack prediction in multiple dimensions. First, we can predict what will the attacker do next and when. Second, we can predict where will the attack hit, e.g., when an attacker is targeting several networks at once. In a week-long experiment, we processed in total over 1 million alerts, from which we mined predictive rules every day. Our findings show that most of the rules display stable values of support and confidence and, thus, can be used to predict cyber attacks in consecutive days after mining without a need to actualize the rules every day

    Predictions of Network Attacks in Collaborative Environment

    Get PDF
    This paper is a digest of the thesis on predicting cyber attacks in a collaborative environment. While previous works mostly focused on predicting attacks as seen from a single observation point, we proposed taking advantage of collaboration and exchange of intrusion detection alerts among organizations and networks. Thus, we can observe the cyber attack on a large scale and predict the next action of an adversary and its target. The thesis follows the three levels of cyber situational awareness: perception, comprehension, and projection. In the perception phase, we discuss the improvements of intrusion detection systems that allow for sharing intrusion detection alerts and their correlation. In the comprehension phase, we employed data mining to discover frequent attack patterns. In the projection phase, we present the analytical framework for the predictive analysis of the alerts backed by data mining and contemporary data processing approaches. The results are shown from experimental evaluation in the security alert sharing platform SABU, where real-world alerts from Czech academic and commercial networks are shared. The thesis is accompanied by the implementation of the analytical framework and a dataset that provides a baseline for future work

    Machine-assisted Cyber Threat Analysis using Conceptual Knowledge Discovery

    Get PDF
    Over the last years, computer networks have evolved into highly dynamic and interconnected environments, involving multiple heterogeneous devices and providing a myriad of services on top of them. This complex landscape has made it extremely difficult for security administrators to keep accurate and be effective in protecting their systems against cyber threats. In this paper, we describe our vision and scientific posture on how artificial intelligence techniques and a smart use of security knowledge may assist system administrators in better defending their networks. To that end, we put forward a research roadmap involving three complimentary axes, namely, (I) the use of FCA-based mechanisms for managing configuration vulnerabilities, (II) the exploitation of knowledge representation techniques for automated security reasoning, and (III) the design of a cyber threat intelligence mechanism as a CKDD process. Then, we describe a machine-assisted process for cyber threat analysis which provides a holistic perspective of how these three research axes are integrated together

    Predictive Cyber Situational Awareness and Personalized Blacklisting: A Sequential Rule Mining Approach

    Get PDF
    Cybersecurity adopts data mining for its ability to extract concealed and indistinct patterns in the data, such as for the needs of alert correlation. Inferring common attack patterns and rules from the alerts helps in understanding the threat landscape for the defenders and allows for the realization of cyber situational awareness, including the projection of ongoing attacks. In this paper, we explore the use of data mining, namely sequential rule mining, in the analysis of intrusion detection alerts. We employed a dataset of 12 million alerts from 34 intrusion detection systems in 3 organizations gathered in an alert sharing platform, and processed it using our analytical framework. We execute the mining of sequential rules that we use to predict security events, which we utilize to create a predictive blacklist. Thus, the recipients of the data from the sharing platform will receive only a small number of alerts of events that are likely to occur instead of a large number of alerts of past events. The predictive blacklist has the size of only 3 % of the raw data, and more than 60 % of its entries are shown to be successful in performing accurate predictions in operational, real-world settings

    Survey of Attack Projection, Prediction, and Forecasting in Cyber Security

    Get PDF
    This paper provides a survey of prediction, and forecasting methods used in cyber security. Four main tasks are discussed first, attack projection and intention recognition, in which there is a need to predict the next move or the intentions of the attacker, intrusion prediction, in which there is a need to predict upcoming cyber attacks, and network security situation forecasting, in which we project cybersecurity situation in the whole network. Methods and approaches for addressing these tasks often share the theoretical background and are often complementary. In this survey, both methods based on discrete models, such as attack graphs, Bayesian networks, and Markov models, and continuous models, such as time series and grey models, are surveyed, compared, and contrasted. We further discuss machine learning and data mining approaches, that have gained a lot of attention recently and appears promising for such a constantly changing environment, which is cyber security. The survey also focuses on the practical usability of the methods and problems related to their evaluation

    How can SMEs benefit from big data? Challenges and a path forward

    Get PDF
    Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state-of-the-art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley & Sons, Ltd.Peer ReviewedPostprint (author's final draft

    Adversarial behaviours knowledge area

    Full text link
    The technological advancements witnessed by our society in recent decades have brought improvements in our quality of life, but they have also created a number of opportunities for attackers to cause harm. Before the Internet revolution, most crime and malicious activity generally required a victim and a perpetrator to come into physical contact, and this limited the reach that malicious parties had. Technology has removed the need for physical contact to perform many types of crime, and now attackers can reach victims anywhere in the world, as long as they are connected to the Internet. This has revolutionised the characteristics of crime and warfare, allowing operations that would not have been possible before. In this document, we provide an overview of the malicious operations that are happening on the Internet today. We first provide a taxonomy of malicious activities based on the attacker’s motivations and capabilities, and then move on to the technological and human elements that adversaries require to run a successful operation. We then discuss a number of frameworks that have been proposed to model malicious operations. Since adversarial behaviours are not a purely technical topic, we draw from research in a number of fields (computer science, criminology, war studies). While doing this, we discuss how these frameworks can be used by researchers and practitioners to develop effective mitigations against malicious online operations.Published versio
    • …
    corecore