28,769 research outputs found

    Challenges for a CBR framework for argumentation in open MAS

    Full text link
    [EN] Nowadays, Multi-Agent Systems (MAS) are broadening their applications to open environments, where heterogeneous agents could enter into the system, form agents’ organizations and interact. The high dynamism of open MAS gives rise to potential conflicts between agents and thus, to a need for a mechanism to reach agreements. Argumentation is a natural way of harmonizing conflicts of opinion that has been applied to many disciplines, such as Case-Based Reasoning (CBR) and MAS. Some approaches that apply CBR to manage argumentation in MAS have been proposed in the literature. These improve agents’ argumentation skills by allowing them to reason and learn from experiences. In this paper, we have reviewed these approaches and identified the current contributions of the CBR methodology in this area. As a result of this work, we have proposed several open issues that must be taken into consideration to develop a CBR framework that provides the agents of an open MAS with arguing and learning capabilities.This work was partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022 and by the Spanish government and FEDER funds under TIN2006-14630-C0301 project.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2009). Challenges for a CBR framework for argumentation in open MAS. Knowledge Engineering Review. 24(4):327-352. https://doi.org/10.1017/S0269888909990178S327352244Willmott S. , Vreeswijk G. , Chesñevar C. , South M. , McGinnis J. , Modgil S. , Rahwan I. , Reed C. , Simari G. 2006. Towards an argument interchange format for multi-agent systems. In Proceedings of the AAMAS International Workshop on Argumentation in Multi-Agent Systems, ArgMAS-06, 17–34.Sycara, K. P. (1990). Persuasive argumentation in negotiation. Theory and Decision, 28(3), 203-242. doi:10.1007/bf00162699Ontañón S. , Plaza E. 2006. Arguments and counterexamples in case-based joint deliberation. In AAMAS-06 Workshop on Argumentation in Multi-Agent Systems, ArgMAS-06, 36–53.Sadri F. , Toni F. , Torroni P. 2001. Dialogues for negotiation: agent varieties and dialogue sequences. In Proceedings of the 8th International Workshop on Agent Theories, Architectures, and Languages, ATAL-01, Intelligent Agents VIII 2333, 405–421. Springer.Fox J. , Parsons S. 1998. Arguing about beliefs and actions. In Applications of Uncertainty Formalisms, Lecture Notes in Computer Science 1455, 266–302. Springer.Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. doi:10.1016/0004-3702(94)00041-xAulinas M. , Tolchinsky P. , Turon C. , Poch M. , Cortés U. 2007. Is my spill environmentally safe? Towards an integrated management of wastewater in a river basin using agents that can argue. In 7th International IWA Symposium on Systems Analysis and Integrated Assessment in Water Management. Washington DC, USA.Amgoud L. 2003. A formal framework for handling conflicting desires. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science 2711, 552–563. Springer.Armengol E. , Plaza E. 2001. Lazy induction of descriptions for relational case-based learning. In European Conference on Machine Learning, ECML-01, 13–24.Sørmo, F., Cassens, J., & Aamodt, A. (2005). Explanation in Case-Based Reasoning–Perspectives and Goals. Artificial Intelligence Review, 24(2), 109-143. doi:10.1007/s10462-005-4607-7RAHWAN, I., RAMCHURN, S. D., JENNINGS, N. R., McBURNEY, P., PARSONS, S., & SONENBERG, L. (2003). Argumentation-based negotiation. The Knowledge Engineering Review, 18(4), 343-375. doi:10.1017/s0269888904000098Brüninghaus S. , Ashley K. D. 2001. Improving the representation of legal case texts with information extraction methods. In 7th International Conference on Artificial Intelligence and Law, ICAIL-01, 42–51.Parsons, S. (1998). Agents that reason and negotiate by arguing. Journal of Logic and Computation, 8(3), 261-292. doi:10.1093/logcom/8.3.261Atkinson, K., Bench-Capon, T., & Mcburney, P. (2005). A Dialogue Game Protocol for Multi-Agent Argument over Proposals for Action. Autonomous Agents and Multi-Agent Systems, 11(2), 153-171. doi:10.1007/s10458-005-1166-xBrüninghaus S. , Ashley K. D. 2003. Predicting the outcome of case-based legal arguments. In 9th International Conference on Artificial Intelligence and Law, ICAIL-03, 233–242.Modgil S. , Tolchinsky P. , Cortés U. 2005. Towards formalising agent argumentation over the viability of human organs for transplantation. In 4th Mexican International Conference on Artificial Intelligence, MICAI-05, 928–938.Tolchinsky P. , Atkinson K. , McBurney P. , Modgil S. , Cortés U. 2007. Agents deliberating over action proposals using the ProCLAIM model. In 5th International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS-07, 32–41.Prakken, H., & Sartor, G. (1998). Artificial Intelligence and Law, 6(2/4), 231-287. doi:10.1023/a:1008278309945Gordon T. F. , Karacapilidis N. 1997. The Zeno argumentation framework. In International Conference on Artificial Intelligence and Law, ICAIL-97, ACM Press, 10–18.Tolchinsky P. , Modgil S. , Cortés U. 2006a. Argument schemes and critical questions for heterogeneous agents to argue over the viability of a human organ. In AAAI Spring Symposium Series; Argumentation for Consumers of Healthcare, 377–384.Aleven V. , Ashley K. D. 1997. Teaching case-based argumentation through a model and examples, empirical evaluation of an intelligent learning environment. In 8th World Conference of the Artificial Intelligence in Education Society, 87–94.Rahwan, I. (2005). Guest Editorial: Argumentation in Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems, 11(2), 115-125. doi:10.1007/s10458-005-3079-0RISSLAND, E. L., ASHLEY, K. D., & BRANTING, L. K. (2005). Case-based reasoning and law. The Knowledge Engineering Review, 20(3), 293-298. doi:10.1017/s0269888906000701Tolchinsky, P., Cortes, U., Modgil, S., Caballero, F., & Lopez-Navidad, A. (2006). Increasing Human-Organ Transplant Availability: Argumentation-Based Agent Deliberation. IEEE Intelligent Systems, 21(6), 30-37. doi:10.1109/mis.2006.116McBurney, P., Hitchcock, D., & Parsons, S. (2006). The eightfold way of deliberation dialogue. International Journal of Intelligent Systems, 22(1), 95-132. doi:10.1002/int.20191Rissland, E. L., Ashley, K. D., & Loui, R. P. (2003). AI and Law: A fruitful synergy. Artificial Intelligence, 150(1-2), 1-15. doi:10.1016/s0004-3702(03)00122-xSoh, L.-K., & Tsatsoulis, C. (2005). A Real-Time Negotiation Model and A Multi-Agent Sensor Network Implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215-271. doi:10.1007/s10458-005-0539-5Capobianco, M., Chesñevar, C. I., & Simari, G. R. (2005). Argumentation and the Dynamics of Warranted Beliefs in Changing Environments. Autonomous Agents and Multi-Agent Systems, 11(2), 127-151. doi:10.1007/s10458-005-1354-8Tolchinsky P. , Modgil S. , Cortés U. , Sànchez-Marrè M. 2006b. CBR and argument schemes for collaborative decision making. In Conference on Computational Models of Argument, COMMA-06, 144, 71–82. IOS Press.Ossowski S. , Julian V. , Bajo J. , Billhardt H. , Botti V. , Corchado J. M. 2007. Open issues in open MAS: an abstract architecture proposal. In Conferencia de la Asociacion Española para la Inteligencia Artificial, CAEPIA-07, 2, 151–160.Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: the HERMES system. Information Systems, 26(4), 259-277. doi:10.1016/s0306-4379(01)00020-5Aamodt A. 2004. Knowledge-intensive case-based reasoning in Creek. In 7th European Conference on Case-Based Reasoning ECCBR-04, 1–15.Jakobovits H. , Vermeir D. 1999. Dialectic semantics for argumentation frameworks. In Proceedings of the 7th International Conference on Artificial Intelligence and Law, ICAIL-99, ACM Press, 53–62.Díaz-Agudo, B., & González-Calero, P. A. (s. f.). An Ontological Approach to Develop Knowledge Intensive CBR Systems. Ontologies, 173-213. doi:10.1007/978-0-387-37022-4_7Reed C. , Walton D. 2005. Towards a formal and implemented model of argumentation schemes in agent communication. In Proceedings of the 1st International Workshop in Multi-Agent Systems, ArgMAS-04, 173–188.Sycara K. 1989. Argumentation: planning other agents’ plans. In 11th International Joint Conference on Artificial Intelligence, 1, 517–523. Morgan Kaufmann Publishers, Inc.Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence. Artificial Intelligence, 171(10-15), 619-641. doi:10.1016/j.artint.2007.05.001Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1-2), 81-132. doi:10.1016/0004-3702(80)90014-4Amgoud L. , Kaci S. 2004. On the generation of bipolar goals in argumentation-based negotiation. In 1st International Workshop on Argumentation in Multi-Agent Systems, ArgMAS, Lecture Notes in Computer Science 3366, 192–207. Springer.CHESÑEVAR, C., MCGINNIS, MODGIL, S., RAHWAN, I., REED, C., SIMARI, G., … WILLMOTT, S. (2006). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293-316. doi:10.1017/s0269888906001044Rahwan I. , Amgoud L. 2006. An argumentation-based approach for practical reasoning. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS-06, ACM Press, 347–354.Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155-169. doi:10.1007/bf01405730Soh L.-K. , Tsatsoulis C. 2001b. Reflective negotiating agents for real-time multisensor target tracking. In International Joint Conference on Artificial Intelligence, IJCAI-01, 1121–1127.Eemeren, F. H. van, & Grootendorst, R. (1984). Speech Acts in Argumentative Discussions. doi:10.1515/9783110846089Rissland E. L. , Skalak D. B. , Friedman M. T. 1993. Bankxx: a program to generate argument through case-based search. In International Conference on Artificial Intelligence and Law, ICAIL-93, 117–124.Sycara K. 1987. Resolving Adversarial Conflicts: An Approach Integrating Case-Based and Analytic Methods, PhD thesis, School of Information and Computer Science. Georgia Institute of Technology.Ontañón S. , Plaza E. 2007. Learning and joint deliberation through argumentation in multi-agent systems. In International Conference on Autonomous Agents and Multiagent Systems, AAMAS-07, 971–978.Rissland, E. L., & Skalak, D. B. (1991). CABARET: rule interpretation in a hybrid architecture. International Journal of Man-Machine Studies, 34(6), 839-887. doi:10.1016/0020-7373(91)90013-wDaniels J. J. , Rissland E. L. 1997. Finding legally relevant passages in case opinions. In 6th International Conference on Artificial Intelligence and Law, ICAIL-97, 39–47.Brüninghaus S. , Ashley K. D. 2005. Generating legal arguments and predictions from case texts. In 10th International Conference on Artificial Intelligence and Law, ICAIL-05, 65–74.Simari G. R. , García A. J. , Capobianco M. 2004. Actions, planning and defeasible reasoning. In Proceedings of the 10th International Workshop on Non-monotonic Reasoning, NMR-04, 377–384.Soh L.-K. , Tsatsoulis C. 2001a. Agent-based argumentative negotiations with case-based reasoning. In AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 16–25.Ashley, K. D. (1991). Reasoning with cases and hypotheticals in HYPO. International Journal of Man-Machine Studies, 34(6), 753-796. doi:10.1016/0020-7373(91)90011-uHulstijn J. , van der Torre L. 2004, Combining goal generation and planning in an argumentation framework. In Proceedings of the Workshop on Argument, Dialogue and Decision. International Workshop on Non-monotonic Reasoning, NMR-04, 212–218.Karacapilidis N. , Trousse B. , Papadias D. 1997. Using case-based reasoning for argumentation with multiple viewpoints. In 2nd International Conference on Case-Based Reasoning, ICCBR-97, 541–552.Branting, L. K. (1991). Building explanations from rules and structured cases. International Journal of Man-Machine Studies, 34(6), 797-837. doi:10.1016/0020-7373(91)90012-

    Agreement technologies and their use in cloud computing environments

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s13748-012-0031-9[EN] Nowadays, cloud computing is revolutionizing the services provided through the Internet to adapt itself in order to keep the quality of its services. Recent research foresees the advent of a new discipline of agent-based cloud computing systems that can make decisions about adaption in an uncertain environment. This paper discusses the role of argumentation in the next generation of agreement technologies and its use in cloud computing environments.This work is supported by the Spanish government (MICINN), project reference: TIN2012-36586-C03-01.Heras Barberá, SM.; De La Piedra, F.; Julian Inglada, VJ.; Rodríguez, S.; Botti Navarro, VJ.; Bajo, J.; Corchado, JM. (2012). Agreement technologies and their use in cloud computing environments. Progress in Artificial Intelligence. 1(4):277-290. https://doi.org/10.1007/s13748-012-0031-9S27729014European Comission: The Future of Cloud Computing. Technical report (2010)Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP03 Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 164–177. ACM, New York (2003)Wang, L., et. al.: Scientific cloud computing: early definition and experience. In: 10th IEEE International Conference on High Performance Computing and Communications (HPCC-08), pp. 825–830. IEEE Press (2008)Talia, D.: Clouds meet agents: toward intelligent cloud services. Internet Comput. IEEE 16(2), 78–81 (2012). doi: 10.1109/MIC.2012.28Heras, S.: Case-Based Argumentation Framework for Agent Societies. PhD thesis, Universitat Politècnica de València. http://hdl.handle.net/10251/12497 (2011)Ashton, K.: That ‘internet of things’ thing. RFID J. (2009). http://www.rfidjournal.com/article/view/4986Klusch, M.: Information agent technology for the Internet: a Survey. Data Knowl. Eng. 36, 337–372 (2001)Schaffer, H.E.: X as a Service. Cloud Computing, and the Need for Good Judgment IT Professional 11(5), 4–5 (2009). doi: 10.1109/MITP.2009.112Richardson, L., Ruby, S.: RESTful Web Services, Web services for the real world O’Reilly, Media, May, p. 454 (2007)GlusterFS Developers. The Gluster web site. http://www.gluster.org (2012)Chodorow, K., Dirolf, M.: The Definitive Guide. O’Reilly Media, MongoDB (2010)Fuentes-Fernandez, R., Hassan, S., Pavon, J., Galan, J.M., Lopez-Paredes, A.: Metamodels for role-driven agent-based modelling. Comput. Math. Organ. Theory 18(1), 91–112 (2012)Jordán, J., et al.: A customer support application using argumentation in multi-agent systems. In: 14th International Conference on, Information Fusion, pp. 772–778 (2011)Heras, S., Jordán, J., Botti, V., Julián, V.: Argue to agree: a case-based argumentation approach. Int. J. Approx. Reasoning (2012, in press)Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)Bench-Capon, T., Sartor, G.: A model of legal reasoning with cases incorporating theories and values. Artif. Intell. 150(1–2), 97–143 (2003)Dignum, F., Weigand, H.: Communication and deontic logic. In: Information Systems Correctness and Reusability, pp. 242–260. World Scientific, Singapore (1995)Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)Lopez-Rodriguez, I., Hernandez-Tejera, M.: Software agents as cloud computing services. In: 9th International Conference on Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol. 88, pp. 271–276. Springer, Berlin (2011)Sim, K.M.: Towards complex negotiation for cloud economy. In: 5th International Conference on Advances in Grid and Pervasive Computing. LNCS, vol. 6104, pp. 395–406. Springer, Berlin (2010)Aversa, R., et al.: Cloud agency: a mobile agent based cloud system. In: International Conference on Complex, Intelligent and Software Intensive Systems, pp. 132–137. IEEE Computer Society Press, Washington, DC (2010)Cao, B., et al.: A service-oriented qos-assured and multi-agent cloud computing architecture. In: 1st International Conference on Cloud Computing. LNCS, vol. 5931, pp. 644–649. Springer, Berlin (2009)Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, Berlin (2009

    Proceedings of the 11th European Agent Systems Summer School Student Session

    Get PDF
    This volume contains the papers presented at the Student Session of the 11th European Agent Systems Summer School (EASSS) held on 2nd of September 2009 at Educatorio della Providenza, Turin, Italy. The Student Session, organised by students, is designed to encourage student interaction and feedback from the tutors. By providing the students with a conference-like setup, both in the presentation and in the review process, students have the opportunity to prepare their own submission, go through the selection process and present their work to each other and their interests to their fellow students as well as internationally leading experts in the agent field, both from the theoretical and the practical sector. Table of Contents: Andrew Koster, Jordi Sabater Mir and Marco Schorlemmer, Towards an inductive algorithm for learning trust alignment . . . 5; Angel Rolando Medellin, Katie Atkinson and Peter McBurney, A Preliminary Proposal for Model Checking Command Dialogues. . . 12; Declan Mungovan, Enda Howley and Jim Duggan, Norm Convergence in Populations of Dynamically Interacting Agents . . . 19; Akın Günay, Argumentation on Bayesian Networks for Distributed Decision Making . . 25; Michael Burkhardt, Marco Luetzenberger and Nils Masuch, Towards Toolipse 2: Tool Support for the JIAC V Agent Framework . . . 30; Joseph El Gemayel, The Tenacity of Social Actors . . . 33; Cristian Gratie, The Impact of Routing on Traffic Congestion . . . 36; Andrei-Horia Mogos and Monica Cristina Voinescu, A Rule-Based Psychologist Agent for Improving the Performances of a Sportsman . . . 39; --Autonomer Agent,Agent,Künstliche Intelligenz

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Industrial Symbiotic Networks as Coordinated Games

    Get PDF
    We present an approach for implementing a specific form of collaborative industrial practices-called Industrial Symbiotic Networks (ISNs)-as MC-Net cooperative games and address the so called ISN implementation problem. This is, the characteristics of ISNs may lead to inapplicability of fair and stable benefit allocation methods even if the collaboration is a collectively desired one. Inspired by realistic ISN scenarios and the literature on normative multi-agent systems, we consider regulations and normative socioeconomic policies as two elements that in combination with ISN games resolve the situation and result in the concept of coordinated ISNs.Comment: 3 pages, Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018
    corecore