1,817 research outputs found

    Bandits Warm-up Cold Recommender Systems

    Get PDF
    We address the cold start problem in recommendation systems assuming no contextual information is available neither about users, nor items. We consider the case in which we only have access to a set of ratings of items by users. Most of the existing works consider a batch setting, and use cross-validation to tune parameters. The classical method consists in minimizing the root mean square error over a training subset of the ratings which provides a factorization of the matrix of ratings, interpreted as a latent representation of items and users. Our contribution in this paper is 5-fold. First, we explicit the issues raised by this kind of batch setting for users or items with very few ratings. Then, we propose an online setting closer to the actual use of recommender systems; this setting is inspired by the bandit framework. The proposed methodology can be used to turn any recommender system dataset (such as Netflix, MovieLens,...) into a sequential dataset. Then, we explicit a strong and insightful link between contextual bandit algorithms and matrix factorization; this leads us to a new algorithm that tackles the exploration/exploitation dilemma associated to the cold start problem in a strikingly new perspective. Finally, experimental evidence confirm that our algorithm is effective in dealing with the cold start problem on publicly available datasets. Overall, the goal of this paper is to bridge the gap between recommender systems based on matrix factorizations and those based on contextual bandits

    Semantic Grounding Strategies for Tagbased Recommender Systems

    Full text link
    Recommender systems usually operate on similarities between recommended items or users. Tag based recommender systems utilize similarities on tags. The tags are however mostly free user entered phrases. Therefore, similarities computed without their semantic groundings might lead to less relevant recommendations. In this paper, we study a semantic grounding used for tag similarity calculus. We show a comprehensive analysis of semantic grounding given by 20 ontologies from different domains. The study besides other things reveals that currently available OWL ontologies are very narrow and the percentage of the similarity expansions is rather small. WordNet scores slightly better as it is broader but not much as it does not support several semantic relationships. Furthermore, the study reveals that even with such number of expansions, the recommendations change considerably.Comment: 13 pages, 5 figure

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer

    Dynamic Matrix Factorization with Priors on Unknown Values

    Full text link
    Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (\emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Knowledge-based identification of music suited for places of interest

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s40558-014-0004-xPlace is a notion closely linked with the wealth of human experience, and invested by values, attitudes, and cultural influences. In particular, many places are strongly related to music, which contributes to shaping the perception and meaning of a place. In this paper we propose a computational approach to identify musicians and music suited for a place of interest (POI)––which is based on a knowledge-based framework built upon the DBpedia ontology––and a graph-based algorithm that scores musicians with respect to their semantic relatedness with a POI and suggests the top scoring ones. Through empirical experiments we show that users appreciate and judge the musician recommendations generated by the proposed approach as valuable, and perceive compositions of the suggested musicians as suited for the POIs.This work was supported by the Spanish Government (TIN201128538C02) and the Regional Government of Madrid (S2009TIC1542)
    • …
    corecore