26 research outputs found

    Perceptual Video Coding for Machines via Satisfied Machine Ratio Modeling

    Full text link
    Video Coding for Machines (VCM) aims to compress visual signals for machine analysis. However, existing methods only consider a few machines, neglecting the majority. Moreover, the machine perceptual characteristics are not effectively leveraged, leading to suboptimal compression efficiency. In this paper, we introduce Satisfied Machine Ratio (SMR) to address these issues. SMR statistically measures the quality of compressed images and videos for machines by aggregating satisfaction scores from them. Each score is calculated based on the difference in machine perceptions between original and compressed images. Targeting image classification and object detection tasks, we build two representative machine libraries for SMR annotation and construct a large-scale SMR dataset to facilitate SMR studies. We then propose an SMR prediction model based on the correlation between deep features differences and SMR. Furthermore, we introduce an auxiliary task to increase the prediction accuracy by predicting the SMR difference between two images in different quality levels. Extensive experiments demonstrate that using the SMR models significantly improves compression performance for VCM, and the SMR models generalize well to unseen machines, traditional and neural codecs, and datasets. In summary, SMR enables perceptual coding for machines and advances VCM from specificity to generality. Code is available at \url{https://github.com/ywwynm/SMR}

    SSIM-Inspired Quality Assessment, Compression, and Processing for Visual Communications

    Get PDF
    Objective Image and Video Quality Assessment (I/VQA) measures predict image/video quality as perceived by human beings - the ultimate consumers of visual data. Existing research in the area is mainly limited to benchmarking and monitoring of visual data. The use of I/VQA measures in the design and optimization of image/video processing algorithms and systems is more desirable, challenging and fruitful but has not been well explored. Among the recently proposed objective I/VQA approaches, the structural similarity (SSIM) index and its variants have emerged as promising measures that show superior performance as compared to the widely used mean squared error (MSE) and are computationally simple compared with other state-of-the-art perceptual quality measures. In addition, SSIM has a number of desirable mathematical properties for optimization tasks. The goal of this research is to break the tradition of using MSE as the optimization criterion for image and video processing algorithms. We tackle several important problems in visual communication applications by exploiting SSIM-inspired design and optimization to achieve significantly better performance. Firstly, the original SSIM is a Full-Reference IQA (FR-IQA) measure that requires access to the original reference image, making it impractical in many visual communication applications. We propose a general purpose Reduced-Reference IQA (RR-IQA) method that can estimate SSIM with high accuracy with the help of a small number of RR features extracted from the original image. Furthermore, we introduce and demonstrate the novel idea of partially repairing an image using RR features. Secondly, image processing algorithms such as image de-noising and image super-resolution are required at various stages of visual communication systems, starting from image acquisition to image display at the receiver. We incorporate SSIM into the framework of sparse signal representation and non-local means methods and demonstrate improved performance in image de-noising and super-resolution. Thirdly, we incorporate SSIM into the framework of perceptual video compression. We propose an SSIM-based rate-distortion optimization scheme and an SSIM-inspired divisive optimization method that transforms the DCT domain frame residuals to a perceptually uniform space. Both approaches demonstrate the potential to largely improve the rate-distortion performance of state-of-the-art video codecs. Finally, in real-world visual communications, it is a common experience that end-users receive video with significantly time-varying quality due to the variations in video content/complexity, codec configuration, and network conditions. How human visual quality of experience (QoE) changes with such time-varying video quality is not yet well-understood. We propose a quality adaptation model that is asymmetrically tuned to increasing and decreasing quality. The model improves upon the direct SSIM approach in predicting subjective perceptual experience of time-varying video quality
    corecore