225 research outputs found

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators

    A review of epidural simulators: Where are we today?

    Get PDF
    Thirty-one central neural blockade simulators have been implemented into clinical practice over the last thirty years either commercially or for research. This review aims to provide a detailed evaluation of why we need epidural and spinal simulators in the first instance and then draws comparisons between computer-based and manikin-based simulators. This review covers thirty-one simulators in total; sixteen of which are solely epidural simulators, nine are for epidural plus spinal or lumbar puncture simulation, and six, which are solely lumbar puncture simulators. All hardware and software components of simulators are discussed, including actuators, sensors, graphics, haptics, and virtual reality based simulators. The purpose of this comparative review is to identify the direction for future epidural simulation by outlining necessary improvements to create the ideal epidural simulator. The weaknesses of existing simulators are discussed and their strengths identified so that these can be carried forward. This review aims to provide a foundation for the future creation of advanced simulators to enhance the training of epiduralists, enabling them to comprehensively practice epidural insertion in vitro before training on patients and ultimately reducing the potential risk of harm. © 2013 IPEM

    A Novel Haptic Simulator for Evaluating and Training Salient Force-Based Skills for Laparoscopic Surgery

    Get PDF
    Laparoscopic surgery has evolved from an \u27alternative\u27 surgical technique to currently being considered as a mainstream surgical technique. However, learning this complex technique holds unique challenges to novice surgeons due to their \u27distance\u27 from the surgical site. One of the main challenges in acquiring laparoscopic skills is the acquisition of force-based or haptic skills. The neglect of popular training methods (e.g., the Fundamentals of Laparoscopic Surgery, i.e. FLS, curriculum) in addressing this aspect of skills training has led many medical skills professionals to research new, efficient methods for haptic skills training. The overarching goal of this research was to demonstrate that a set of simple, simulator-based haptic exercises can be developed and used to train users for skilled application of forces with surgical tools. A set of salient or core haptic skills that underlie proficient laparoscopic surgery were identified, based on published time-motion studies. Low-cost, computer-based haptic training simulators were prototyped to simulate each of the identified salient haptic skills. All simulators were tested for construct validity by comparing surgeons\u27 performance on the simulators with the performance of novices with no previous laparoscopic experience. An integrated, \u27core haptic skills\u27 simulator capable of rendering the three validated haptic skills was built. To examine the efficacy of this novel salient haptic skills training simulator, novice participants were tested for training improvements in a detailed study. Results from the study demonstrated that simulator training enabled users to significantly improve force application for all three haptic tasks. Research outcomes from this project could greatly influence surgical skills simulator design, resulting in more efficient training

    Microscope Embedded Neurosurgical Training and Intraoperative System

    Get PDF
    In the recent years, neurosurgery has been strongly influenced by new technologies. Computer Aided Surgery (CAS) offers several benefits for patients\u27 safety but fine techniques targeted to obtain minimally invasive and traumatic treatments are required, since intra-operative false movements can be devastating, resulting in patients deaths. The precision of the surgical gesture is related both to accuracy of the available technological instruments and surgeon\u27s experience. In this frame, medical training is particularly important. From a technological point of view, the use of Virtual Reality (VR) for surgeon training and Augmented Reality (AR) for intra-operative treatments offer the best results. In addition, traditional techniques for training in surgery include the use of animals, phantoms and cadavers. The main limitation of these approaches is that live tissue has different properties from dead tissue and that animal anatomy is significantly different from the human. From the medical point of view, Low-Grade Gliomas (LGGs) are intrinsic brain tumours that typically occur in younger adults. The objective of related treatment is to remove as much of the tumour as possible while minimizing damage to the healthy brain. Pathological tissue may closely resemble normal brain parenchyma when looked at through the neurosurgical microscope. The tactile appreciation of the different consistency of the tumour compared to normal brain requires considerable experience on the part of the neurosurgeon and it is a vital point. The first part of this PhD thesis presents a system for realistic simulation (visual and haptic) of the spatula palpation of the LGG. This is the first prototype of a training system using VR, haptics and a real microscope for neurosurgery. This architecture can be also adapted for intra-operative purposes. In this instance, a surgeon needs the basic setup for the Image Guided Therapy (IGT) interventions: microscope, monitors and navigated surgical instruments. The same virtual environment can be AR rendered onto the microscope optics. The objective is to enhance the surgeon\u27s ability for a better intra-operative orientation by giving him a three-dimensional view and other information necessary for a safe navigation inside the patient. The last considerations have served as motivation for the second part of this work which has been devoted to improving a prototype of an AR stereoscopic microscope for neurosurgical interventions, developed in our institute in a previous work. A completely new software has been developed in order to reuse the microscope hardware, enhancing both rendering performances and usability. Since both AR and VR share the same platform, the system can be referred to as Mixed Reality System for neurosurgery. All the components are open source or at least based on a GPL license

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Design of a Hand Held Minimally Invasive Lung Tumour Localization Device

    Get PDF
    Lung cancer is the leading type of cancer that causes death. If diagnosed, the treatment of choice is surgical resection of the tumour. Traditionally, a surgeon feels for the presence of a tumour in open thoracic surgery. However, a minimally invasive approach is desired. A major problem presented by the minimally invasive approach is the localization of the tumour. This project describes the design, analysis, and experimental validation of a novel minimally invasive instrument for lung tumour localization. The instrument end effector is a two degree of freedom lung tissue palpator. It allows for optimal tissue palpation to increase useful sensor feedback by ensuring sensor contact, and prevents tissue damage by uniformly distributing pressure on the tissue with an upper bound force. Finite element analysis was used extensively to guide the design process. The mechanism is actuated using high strength tungsten cables attached to controlled motors. Heat treatment experiments were undertaken with stainless steel alloy 440C for use in the design, achieving a device factor of safety of 4. This factor of safety is based on a 20 N force on the end effector — the approximate weight of a human lung. The design was prototyped and validation experiments were carried out to assess its articulation and its load carrying capacity. Up to 10 N of force was applied to the prototype. Issues to resolve in the current design include cable extension effects and the existence of joint inflection. The end effector was also designed to allow the inclusion of ultrasound, tactile, and kinaesthetic sensors. It is hypothesized that a plurality of sensors will increase the likelihood of positive tumour localization. These sensors, combined with the presented mechanical design, form the basis for research in robotics-assisted palpation. A proof of concept control system is presented for automated palpation

    Validation of the Haptic Cow: A simulator for training veterinary students

    Get PDF
    A virtual reality simulator, the Haptic Cow, has been developed using touch feedback technology for training veterinary students to perform bovine rectal palpation of the reproductive tract. The simulator was designed to supplement existing training and address some of the difficulties associated with teaching palpation-based skills. Students need to achieve a certain level of proficiency by graduation but this has become increasingly difficult because of problems with current training methods and a reduction in the number of opportunities to practice. A simulator- based teaching tool was developed as a potential solution. The first step involved designing a simulator on the basis of requirements established through consultation with both veterinary surgeons, as teachers, and students, as learners. Research was then undertaken to validate the simulator by following a set of established criteria described for the evaluation of new technologies used in medical education. The virtual models were assessed by experts as realistic enough representations of the same structures in the cow. An experiment to assess the effect of simulator training compared the performance of one group of students, whose training was supplemented with a simulator session, with another group of traditionally trained students. The subsequent performance for finding and identifying the uterus when examining cows for the first time, was significantly better for the simulator trained group, indicating that skills learned in the simulator environment transferred to the real task. A project was also undertaken to integrate the simulator into a curriculum, with training included as part of the farm animal course at the University of Glasgow Veterinary School. The training was well received by students, useful feedback was gathered and the simulator continues to be used as part of the course. Further developments were undertaken with the aim of creating a more versatile teaching tool and addressing some of the questions and issues raised. An automated version of the Haptic Cow was designed for students to use on their own, with computer guidance replacing the instructor's role. An evaluation found that the new version of the teaching tool was both usable and an effective way of equipping students with the skills required to find and identify the uterus. The potential to use haptic technology to investigate various aspects of performance was also explored in relation to the question of hand choice for certain palpation-based skills: differentiating between objects on the basis of softness and size. Ongoing research and development options are discussed, with the aim of building on the current work by expanding the role of haptic technology in veterinary education in the future

    A Sensorized Instrument for Minimally Invasive Surgery for the Measurement of Forces during Training and Surgery: Development and Applications

    Get PDF
    The reduced access conditions present in Minimally Invasive Surgery (MIS) affect the feel of interaction forces between the instruments and the tissue being treated. This loss of haptic information compromises the safety of the procedure and must be overcome through training. Haptics in MIS is the subject of extensive research, focused on establishing force feedback mechanisms and developing appropriate sensors. This latter task is complicated by the need to place the sensors as close as possible to the instrument tip, as the measurement of forces outside of the patient\u27s body does not represent the true tool--tissue interaction. Many force sensors have been proposed, but none are yet available for surgery. The objectives of this thesis were to develop a set of instruments capable of measuring tool--tissue force information in MIS, and to evaluate the usefulness of force information during surgery and for training and skills assessment. To address these objectives, a set of laparoscopic instruments was developed that can measure instrument position and tool--tissue interaction forces in multiple degrees of freedom. Different design iterations and the work performed towards the development of a sterilizable instrument are presented. Several experiments were performed using these instruments to establish the usefulness of force information in surgery and training. The results showed that the combination of force and position information can be used in the development of realistic tissue models or haptic interfaces specifically designed for MIS. This information is also valuable in order to create tactile maps to assist in the identification of areas of different stiffness. The real-time measurement of forces allows visual force feedback to be presented to the surgeon. When applied to training scenarios, the results show that experience level correlates better with force-based metrics than those currently used in training simulators. The proposed metrics can be automatically computed, are completely objective, and measure important aspects of performance. The primary contribution of this thesis is the design and development of highly versatile instruments capable of measuring force and position during surgery. A second contribution establishes the importance and usefulness of force data during skills assessment, training and surgery
    • …
    corecore